Problem Set 2

CSc 350, Fall 2019

Assigned: Wednesday, Week 3

Due: Wednesday, Week 4

Department of Computer Science

Union College

Related Reading

Read sections 1.1, 1.2, and 1.3 of [1].

1. **Constructing DFAs from NFAs.** Do problem 1.16, part a, from Sipser [1], p. 86.

2. **Proving that a language is regular.** Let \(B_n = \{ a^k \mid k \text{ is a multiple of } n \} \). Show that for each \(n \geq 1 \), the language is regular.

 So, you have to prove that \(B_1, B_2, B_3, \text{ etc.} \) are all regular. How do you prove that a language is regular? Remember the definition of regular languages. Regular languages are exactly those languages that can be recognized by finite state automata.

3. **Specifying regular expressions.**
 (a) Sipser [1], p. 87, no. 1.22

4. **Specifying more regular expressions.** Give regular expressions generating the following languages.

 In all parts the alphabet is \(\{0, 1\} \).
 (a) \(\{ w \mid w \text{ contains at least three } 1s \} \)
 (b) \(\{ w \mid w \text{ has length of at least 3 and its third symbol is a } 0 \} \)
 (c) \(\{ w \mid \text{ every odd position of } w \text{ is a } 1 \} \)
 (d) \(\{ w \mid w \text{ is any string except } 11 \text{ and } 111 \} \)

References

Honor Code Affirmation

I affirm that I have carried out my academic endeavors with full academic honesty.