Structure-Preserving Anonymization of Social Networks
University at Albany
May 14, 2015
Bailey 201
Lunch will be served at noon.


Social networks are attracting significant interest from researchers in different domains, especially with the advent of social networking systems which enable large-scale collection of network information. However, as much as analysis of such social networks can benefit researchers, it raises serious privacy concerns for the people involved in them. To address such privacy concerns, several techniques, such as k-anonymity-based approaches, have been proposed in the literature to provide user anonymity in published social networks. However, these methods usually introduce a large amount of distortion to the original social network graphs, thus, raising serious questions about their utility for useful social network analysis. Consequently, these techniques may never be applied in practice. We propose two methods to enhance edge-perturbing anonymization methods based on the concepts of structural roles and edge betweenness in social network theory. We experimentally show significant improvements in preserving structural properties in an anonymized social network achieved by our approach compared to the original algorithms over several data sets.

Bio: Amir Masoumzadeh is an Assistant Professor in the Informatics Department at SUNY – Albany. He received his PhD in Information Science from the University of Pittsburgh. Amir is broadly interested in information security, privacy, and trust in modern information systems. His research is primarily focused on access control policy models and privacy-preserving data sharing approaches in application domains such as social networking systems and location based services.

Please email Kristina Striegnitz ( if you have any questions concerning the seminar series or if you would like to receive the seminar announcements by email.