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Abstract

Tensegrities are popular structures for soft robots due to their robust properties but are also difficult to

move in meaningful ways. Looking at movement methods in grasshoppers, which are able to move many

times their body length in short intervals, may lead to discovering more effective movement patterns for

tensegrity structures. Much of the grasshopper’s effective locomotion is due to the the spring-like structures

in its hind legs which store and release energy needed for movement. Tensegrities also have spring structures

which can be contracted to produce movement. Spring stiffness varies in grasshoppers between species and

stages of development. By Hooke’s law of spring dynamics, F = kx, altering the spring stiffness should

increase the force production linearly. We explore the effects of changing spring stiffness on distance traveled

in a tensegrity robot in simulation within Open Dynamics Environment. Six of the Twenty Four springs within

the tensegrity robot were chosen to be actuated. The spring stiffnesses of these six springs were either changed

uniformly or individually to determine if novel tensegrity movement would be produced. Spring stiffness

values were optimized using the Covariance Matrix Adaptation Evolution Strategy. Unlike grasshoppers

which have increased jump performance with greater spring stiffness, the resulting displacement values of

the tensegrity did not follow a linear trend with changes in spring stiffnesses. They did not converge as

expected by Hooke’s law to the greatest possible value. This suggests that altering the spring stiffnesses in

tensegrities could lead to more diverse patterns of locomotion which may also not follow a linear trend with

increasing spring stiffness.
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1 Introduction

Soft robots such as tensegrities are being developed by entities such as NASA for their ability to traverse diffi-

cult and unknown terrain with limited damage to themselves and the environment. Tensegrities are popular

structure for soft robots. However, tensegrities are also known to be difficult to model and move in meaningful

ways.

Tensegrities are structures which maintain their stability through two types of elements: elements that are

always tensioned (cables) and elements that are always compressed (struts). This creates a pre-equilibrated

state, in which the internal forces (compression and tension) stabilize the structure. Tensegrities have useful

qualities such as a high strength to weight ratio, compressibility and robustness [1]. Tensegrities can be moved

in a number of ways, including contracting the cables or through attached resonating motors. A tensegrity

robot which could move in efficient, predictable ways would have many practical uses such as exploration in

unknown environments and difficult terrain.

Often technological advancements occur through biological inspiration. Tensegrity structures are inspired

from biological systems in which they were seen to provide structural stability though tensioned forces [2][3].

Looking through the lens of biology again to methods of movement in organisms may lead to discovering

more efficient movement patterns for tensegrity structures. For example, frogs, kangaroos and grasshoppers

rely on jumping as their primary means of locomotion. These organisms have incredibly effective locomotion

as they are able to jump many times their body length. Much of this ability in locomotion is due to the physical

structure of the animal. For grasshoppers this appears in the large hind legs and musculature which have

evolved specifically for greater jumping ability. In addition, they have a specialized cuticle in the hind legs to

store energy for jumps. It would be difficult to mimic the locomotion pattern of the grasshopper without these

corresponding supporting structures.

A tensegrity robot and a grasshopper have fundamentally different mechanical designs. Tensegrities can

vary in number of struts and springs, with the simplest being three struts and potentially no maximum com-

plexity. The tension of the spring, length of the strut and material of both the spring and strut can be changed

but remain constant, except for damage through use and time. However, these attributes are constant during

simulation. In contrast to the simplistic structure of tensegrities, grasshoppers are complex biological entities.

Grasshoppers contain many parts that are not part of the function of locomotion. They jump by contracting

their muscles and storing energy in their tendons and cuticle. The grasshopper then releases the energy to

move, similarly to a catapult [4]. However, a common feature between tensegrities and grasshoppers are the

spring structures. In tensegrities, the spring structure is the cable which distributes the force and can be ac-

tuated to contract. In grasshoppers the analogous spring structure is the cuticle of the extensor apodeme and

1



semilunar process which store and release energy needed for movement [5]. Modifying the spring behavior in

a tensegrity could lead to more efficient and diverse patterns of locomotion.

The traditional model of spring behavior is Hooke’s law which is F = kx where F is the force produced,

k is the spring stiffness and x is the displacement of the spring from its equilibrium position. In Hooke’s

law k is a constant. The k constant is determined by the slope of a stress-strain curve. When this holds,

the behavior is said to be linear. If shown on a graph, the line should show a direct variation. Hooke’s law

says that stress is directly proportional to strain. Once the strain is increased past the permanent deformation

point, the spring no longer returns to its equilibrium point and no longer obeys Hooke’s law. However, many

biological materials such as the semilunar processes in grasshoppers do not have a linear stress-strain curve

[5]. Semilunar processes vary in spring stiffness across species and between individuals in a species [6]. They

also vary in stiffness across the same individual’s developmental lifespan [7]

The common method of moving tensegrity robots through contracting the cables involves changing the

length of the cable through an attached rotating motor [1]. This causes the robot to topple over. The tensegrity

in this example is the canonical six strut icosahedron formation. The spherical like shape of the tensegrity

combined with the toppling motion creates a locomotion pattern of rolling. This pattern of locomotion relies

on the firing pattern and timing of the contraction of cables to move. However, in this example, as in most

tensegrities, the cables have the same spring stiffness. This limitation of parameters lends to a limitation in

movement patterns. Thus the question is to what extent does a non uniform spring stiffness model produce novel

tensegrity movement?

2 Related Work in Bioinspired Locomotion in Robots

2.1 Structurally bioinspired robots

Another approach to grasshopper inspired locomotion is to fully mimic the structure of the organism. This

approach was seen in a study where a jumping robot was constructed based on the grasshopper leg struc-

ture [8]. Grasshoppers have a pause and leap jump whereby the jumps are separated by long time intervals.

Grasshoppers move through sudden energy release and it is difficult to accurately control the jumping destina-

tion, stability after takeoff, and safe landing. The physical prototype created was successful in mimicking the

grasshopper path and range as the robot jump path paralleled the images of the grasshopper jump path. The

prototype could jump over obstacles of about 14 times its body height and had a jumping distance of about

20 times its body length at the takeoff angle of approximately 60 degrees. However, the prototype could not

maintain the same stability of the grasshopper and could not make a stable landing. The robot they created
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was very much a mechanical version of the lower body of a grasshopper. Their work shows that grasshopper

musculature and movement pattern can be replicated but control of the movement is more difficult. While

this muscle model of movement cannot be replicated in a tensegrity robot model due to the vastly different

structural components, due to its robust, transformable nature, a tensegrity robot would not need to worry

about making a stable landing since it could absorb the shock and regain its shape quickly.

2.2 Other biologically based locomotion in tensegrity robots

Tensegrities have also been used to model musculature such as the mechanism of an actin stress fiber [9]. Loua

et al. modeled the stress fibers using a generic, planar tensegrity mast composed of multiple similar structural

modules. The model incorporated multiple linear filaments oriented in parallel along its main axis, with many

lateral structural links that would correspond to actin-associated molecules. From this research they suggest

that tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors

and could be used in multi-scale modeling of living materials.

Tensegrities have also been used to model animal locomotion, specifically in relation to caterpillars [10].

Rieffel et al. explored how the manduca sexta caterpillar could be used as a model species for soft robotics

as they are completely soft-bodied and lack any rigid elements such as a skeleton. Locomotion is performed

by the co-ordination of their abdominal segments. They suggested that the the dynamics of the caterpillar’s

system are responsible for control tasks and not necessarily neural circuits. They applied this to tensegrity

robots, in their Open Dynmaics Engine (ODE) model they do not use explicit intermodular but rather they

have every strut be able to sense and affect the tension on a single cable. Using this model they evolved

dynamic gaits in simulation. They created a prototype of the soft robot inspired by the caterpillar but did not

test their locomotion model on the prototype.

Orki et al. conducted further research on the modeling of caterpillar locomotion using a tensegrity model

[11]. They represented caterpillar segments using a 2D Assur tensegrity structure called a triad. An interesting

shared characteristic between the model and live caterpillars is that their internal pressure is not a function

of its size. In a caterpillar during growth, body mass is increased 10000-fold, while internal pressure remains

constant. The model is similarly able to maintain near constant internal forces regardless of size. Another

interesting point in this research is that the control algorithm used for the model is also inspired by biological

caterpillar. There is a low level control that is inspired by the mechanics of the caterpillar and a high level

control that is inspired by the nervous system of the caterpillar. The model had many characteristics that

were similar to a biological caterpillar and it generated some novel insight into caterpillar mechanics, thus

this research showed that tensegrities could be used to accurately model a biological entity and provide novel

3



biological insight into that entity.

3 Related work in Grasshopper Spring Stiffness Models

3.1 Stress strain and deformation in grasshopper semilunar processes

The concept of the grasshopper muscle as a two-part spring (semilunar process and extensor apodeme) which

strains at a rate dependent on stress was discussed by Bennet-Clark [5]. The force produced by the straining

of the paired semilunar processes had a curve that did not follow the linear behavior of hookean springs.

The points also fluctuated within 3 newtons for the same distance strained between individuals of the same

species. The extensor apodeme was also seen to vary in fracture points in individuals when stressed over 16

newtons. The grasshoppers also did not exhibit visible plastic deformation in the cuticle from the stress, only

full fractures. This differs from traditional spring models which have a period of plastic deformation before

fracture. This difference is explained by the other musculature in the grasshopper leg which contribute to

supporting the strain.

3.2 Stiffness of cuticle over developmental lifespan of grasshoppers

The distribution and stiffness of cuticle material in the legs of grasshoppers varies throughout their lives [12].

Katz and Gosline had previously found that scaling of the mechanical behavior (increased jump ability) does

not translate to the scaling of external dimensions (increase in tibial length and diameter) [7]. Katz and Gosline

explained this discrepancy in scaling through the alteration of the stiffness of the cuticular material which

produced the observed scaling of flexural stiffness [12].

3.3 Femoral Stiffness Effects on Jump Performance

In contrast to Katz and Gosline, Scott and Hepburn state that femoral stiffness does not have a significant effect

on jumping force [6]. They concluded this by straining the cuticle of various developmental stages and species

with different jump performances. While they acknowledge the positive correlation between exoskeleton cu-

ticular stiffness and jump performance, they state it is due to other elements within the extensor system. They

also state that the jump performance of larvae and adults are similar if mass is taken into account.
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3.4 Modeling Muscle-Spring Dynamics

A muscle-spring interaction model where spring stiffness and loading time were parameters and elastic energy

storage was the desired output was create by Rosario [13]. This model also used the hookean spring model and

equation. However the muscle actuator was the dynamic part of this model. The hookean spring served as a

passive tendon. The spring was attached to the muscle and served to show storage of the energy generated

by the actuated muscle. They used the model to explore the relationship between spring stiffness and energy

storage in biological springs with varied loading times such as the bullfrog and grasshopper.

They found that muscles of organisms that load for longer time intervals, such as grasshoppers, benefited

from high stiffness springs. This is because stiffer springs can store greater elastic energy, as would be expected

from Hooke’s equation when k is increased. However, they found that muscles that load for shorter time

intervals, such as bullfrogs benefited from less stiff springs. Even though less stiff springs could not store

as much energy, they required less activation energy, thus allowing the spring to stretch more for a given

amount of force [13]. From this model, there is uncertainty as to whether stiffer springs would produce greater

energy storage for any given muscle system in an organism, as loading time dynamics differ greatly between

organisms. This brings up further questions whether a mechanical system such as a tensegrity robot would

benefit from stiffer or less stiff springs and if its performance would be effected by the firing timing of the

springs.

4 Methods

In order to determine if a non uniform spring stiffness model produces novel tensegrity movement, two treat-

ments of uniform and non uniform spring stiffness changes were used. These treatments consisted of short or

extended evaluations of either 400 or 8000 time steps.

4.1 Simulation setup and creation

The model of tensegrity robot locomotion was created within Open Dynamics Engine (ODE), a physics en-

gine for simulating rigid body dynamics. The tensegrity formation used for this experiment was the six bar,

spherical icosahedron formation. Twenty four spring elements connected the six bars. The spring dynamics

were originally based on Hooke’s law and were modified to actuate on changes in spring stiffness, this change

being the spring stiffness multiplier. The value of spring stiffness multiplier was multiplied by the k constant

in Hooke’s law equation F = kx to actuate the spring to increase force and thereby produce movement during

simulation. This meaning that the actuation of springs occurred not by directly changing spring length, as one
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would in a typical physical structure but rather by changing the value of the spring stiffness. This allowed

for more direct assessment of the effects of changing spring stiffness on fitness. Fitness was measured by the

horizontal displacement of the center of mass of the tensegrity from its starting position in a non actuated, non

moving state. Vertical displacement was not used in determining fitness value. Center of mass was used as the

point to determine displacement as to prevent changes in rotation and position effecting the fitness value. The

two intervals of measurement were 400 and 8000 time steps, which is roughly equivalent to 20 seconds and 400

seconds. The displacement value from an evaluation is represented by difference in tensegrity location from

the first time step to the last time step. A displacement of 1 would be the length of one strut or stable tensegrity

length, a displacement of .25 would represent displacement of 25 percent of one tensegrity length.

4.2 Determination of firing pattern of springs

When springs contract they do so over a length of time, an instantaneous motion would not produce the

desired production of force from the release of the spring. In particular, loading time has significant impact on

biological spring force production [13]. In addition, repeated extended loading and without sufficient time to

release the force is also not conducive to force production. Thus determination of a firing pattern that would

allow the springs to produce movement in the tensegrity from actuation is key to evaluating the changes

produced by altering spring stiffness. The firing pattern takes a period, phase, duty cycle and time step. The

time step is the step within the simulation which is necessary to decide if the muscle is active or passive during

that time step (determines force applied to spring/ if contracting or relaxing). The period, phase, duty cycle

parameters are used to simulate biological parameters within a jump. The firing pattern used for the simulation

was timestep%period >= phase&&timestep%period < (phase+ (dutycycle ∗ period)) where timestep was the

simulation loop count, period was the interval, phase was the offset and duty cycle was the percentage of how

long the interval was spent in active contraction. These parameters define how long the muscle will be firing

for and what part of the interval it should be firing for.

4.3 Determination and initialization of parameters

Initially, random value optimization trials for the parameters of period, phase and duty cycle where spring

stiffness was fixed at 2 were used to determine the baseline parameters for later trials in which the spring

stiffness would be altered. The period, phase and duty cycle parameters were held constant at 8, 6, 6 for the

trials in which spring stiffness as optimized.

Six springs of the twenty four springs were changed using the spring stiffness multiplier during simulation.

These six springs were chosen from early qualitative analysis where different configurations were used and
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the movement of the tensegrity was visualized in simulation. The springs are relatively close to each other

in simulation because this configuration produced forward movement using the initial parameters. Fewer

springs actuated or actuation of springs spread across the tensegrity produced less forward movement. In

several instances of more than six springs the tensegrity seemed to deform inwards during actuation of the

springs.

The spring stiffness multiplier either changed uniformly or non uniformly across the tensegrity. In the case

of uniform change of spring stiffness multipliers, all multipliers were changed together for a given evaluation.

In the case of non uniform change, all six spring multipliers were mutated and optimized individually for a

given evaluation. No spring stiffness was changed within an evaluation.

The default starting spring stiffness of all twenty four springs in the tensegrity model was 2. The values

of all spring stiffness multipliers were initially 2 and were artificially bounded between the values of 1 and 6.

The values of the multiplier of spring stiffness of the six springs were altered and optimized using Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) with elitism enabled.

4.4 Optimization using Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

In order to optimize for spring stiffness, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

was utilized. CMA-ES is an evolutionary algorithm which is based off of the biological principle of evolu-

tion through variation and selection. Each new generation of candidate solutions are generated by variation

through recombination and mutation. These candidates are evaluated using a fitness function which produces

a fitness value for them. This continues with each generation getting candidates with better fitness values.

If elitism is also used in the selection then only the best candidates are reintroduced from the previous gen-

eration to the next. The libcmaes package created by Nikolaus Hansen was utilized in order to perform the

optimizations.

5 Results

The evaluations of one trial for uniform spring stiffness multipliers across six springs in a tensegrity, with an

evaluation being 400 time steps is seen in figure 1. The highest fitness value for this optimization trial was

determined to be 0.17 and was attained after 37 function evaluations. The optimum value of the six springs

was determined to be 2.27 in this trial.

The evaluations of one trial for non uniform spring stiffness multipliers across six springs in a tensegrity,

with an evaluation being 400 time steps is seen in figure 2. The highest fitness value for this optimization
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trial was determined to be 0.17 and was attained after 217 function evaluations. The optimum values of the

multipliers of the six springs was determined to be 2.46, 2.18, 4.88, 3.91, 2.87, and 2.27 in this trial.

Trials for uniform and non uniform spring stiffness multipliers were repeated and the output of the me-

dian of the fitness values over the first 200 evaluations of 400 time steps is shown in figure 3. Fitness values

contained within the 1st and 3rd quartile varied less than .01 from the median value of the function evaluation

for uniform spring stiffness multipliers. Fitness values contained within the 1st and 3rd quartile varied up to

.05 from the median value of the function evaluation for non uniform spring stiffness multipliers. Distribution

of the fitness values at convergence for these trials is seen in figure 4. The p-value for difference between data

sets was less than .0001.

The evaluations of one trial for uniform spring stiffness multipliers across six springs in a tensegrity, with

an evaluation being 8000 time steps is seen in figure 5. The highest fitness value for this optimization trial was

determined to be 0.97 and was attained after 123 function evaluations. The optimum value of the six springs

was determined to be 2.08 in this trial.

The evaluations of one trial for non uniform spring stiffness multipliers across six springs in a tensegrity,

with an evaluation being 8000 time steps is seen in figure 6. The highest fitness value for this optimization

trial was determined to be 1.27 and was attained after 127 function evaluations. The optimum values of the

multipliers of the six springs was determined to be 2.46, 2.18, 4.88, 3.91, 2.87, and 2.27 in this trial.

Trials for uniform and non uniform spring stiffness multipliers were repeated and the output of the median

of the fitness values over the first 400 evaluations of 8000 time steps is shown in Figure 7. This interval of

evaluations, rather than the 200 evaluations for 400 time steps, was needed to show convergence of fitness

values for non uniform spring stiffness multipliers. Fitness values contained within the 1st and 3rd quartile

varied around 0.15 from the median value of the function evaluation for both uniform and non uniform spring

stiffness multipliers. Distribution of the fitness values at convergence for these trials is seen in figure 8. The

p-value for difference between data sets was .013.

6 Discussion

6.1 Tensegrity Robot Locomotion

Through Hooke’s law F = kx it is predicted that higher spring stiffness will lead to higher force production.

Thus it would be expected in simulation that higher spring stiffnesses would lead to higher force production

and thus greater distance traveled by the tensegrity. While there were often one or two springs out of the six

that would converge to values close to the upper bound of 6 in various trials, the majority of non uniform
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Figure 1: One optimization trial of uniform spring stiffness of six springs using CMA-ES elitism over 200
evaluations, each evaluation being 400 time steps in simulation. (a) Fitness value of 0.17 displacement attained
after 37 evaluations. (b) Optimum value of the uniform spring stiffness multiplier determined to be 2.27 from
evaluations.

Figure 2: One optimization trial of nonuniform spring stiffness of six springs using CMA-ES elitism over 400
evaluations, each evaluation being 400 time steps in simulation. (a) Fitness value of 0.17 displacement attained
after 217 evaluations. (b) Optimum values of nonuniform spring stiffness multiplier of six springs determined
to be 2.46, 2.18, 4.88, 3.91, 2.87, and 2.27 from evaluations.
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Figure 3: Median, first and third quartiles shown of tensegrity displacement fitness values of repeated trials
of 200 evaluations, each evaluation being 400 time steps in simulation using CMA-ES elitism. Red represents
uniform spring stiffness. Blue is nonuniform spring stiffness.

Figure 4: Median, first and third quartiles shown of tensegrity displacement fitness values at convergence for
uniform and non uniform stiffness multiplier optimizations, each evaluation being 400 time steps. P-value
represented of difference between data sets is 5.35049526923e-07
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Figure 5: One optimization trial of uniform spring stiffness of six springs using CMA-ES elitism over 200
evaluations, each evaluation being 8000 time steps in simulation. (a) Fitness value of 0.97 displacement attained
after 123 evaluations. (b) Optimum value of the uniform spring stiffness multiplier determined to be 2.08 from
evaluations.

Figure 6: One optimization trial of spring stiffness of six springs using CMA-ES elitism over 400 evaluations.
(a) Fitness value of 1.27 displacement attained after 127 evaluations. (b) Optimum values of the spring stiffness
multiplier of 6 springs determined to be 4.35, 4.54, 2.60, 1.41, 2.00, and 4.97 from evaluations.
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Figure 7: Median, first and third quartiles shown of tensegrity displacement fitness values of repeated trials
of 400 evaluations, each evaluation being 8000 time steps in simulation using CMA-ES elitism. Red represents
uniform spring stiffness. Blue is nonuniform spring stiffness.

Figure 8: Median, first and third quartiles shown of tensegrity displacement fitness values at convergence for
uniform and non uniform stiffness multiplier optimizations, each evaluation being 8000 time steps. P-value
represented of difference between data sets is 0.013350786562.
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Figure 9: Spread of spring stiffness multiplier values at convergence for evaluations of 400 time steps

spring stiffness multipliers remained between 2 and 4 (Figure 2). The spring stiffness multipliers did not all

converge to high values as would be predicted by looking at the hookean equation alone. In addition, the

spring stiffness multipliers did not converge to a single best value, instead a spread of values was seen (Figure

9).

The data shows that altering the spring stiffness multiplier between springs produces a range of displace-

ment values and greater displacement values than having a uniform spring stiffness multiplier for the given set

of six springs for shorter time intervals of 400 time steps (Figure 3, 4). A similar trend of greater displacement

values for non uniform spring stiffness multipliers is seen for the longer evaluations of 8000 time steps (Figure

7). However, the difference in displacement values between uniform and non uniform stiffness multipliers is

not as large and may not be considered as significant (Figure 8).

It is interesting to note that trials with uniform spring stiffness not only had a more limited range of fit-

ness values for both intervals (Figure 4, 8), but also displayed a limited a limited range of values of stiffness

multipliers (Figure 1b, 5b). The best multiplier stiffness values at convergence rarely strayed from the starting

2.0 value. In these cases the best stiffness multipliers for the six springs was determined to be 2.27 (Figure 1b)

and 2.08 (Figure 5b). This limitation in variation was not due to a limitation on mutation or generation size

in the optimization. The original starting value of stiffness multipliers was 2 and was kept the same between

all trials of uniform and non uniform spring stiffness. The initial sigma values (step size or error guess of best

value) were kept the same between all trials. Lambda values (offspring between generations) were also kept

at default values. Yet within the best offspring from the evaluations, the stiffness multipliers did not go below

2 or above 4. Trends early in the optimization may have effected the range of values tested. The increase in
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uniform spring multiplier stiffness in the early evaluations (Figure 1b) is also responsible for the decrease in

the fitness value of displacement (Figure 1a). This may have effected the optimization algorithm which have

chosen to test values further away from the start point that seemed to decrease the fitness value. However,

as seen in the non uniform trials, the relationship between fitness value and spring stiffness multiplier is not

necessarily linear.

Overall this data suggests that having tensegrities with a range of spring stiffnesses could lead to greater

displacement through locomotion. The displacement values did not follow a linear trend with changes in

spring stiffnesses. This contributed to the diversity in displacement values during the optimization of the non

uniform spring stiffness multipliers. This also suggests that altering the spring stiffnesses could lead to more

diverse patterns of locomotion which may also not follow a linear trend with increasing spring stiffness.

6.2 Biological Grasshopper Spring Comparisons

In comparison to a grasshopper, our tensegrity did not move effectively. In short intervals, the body length

to distance traveled ratio between a grasshopper and a tensegrity is not comparable. An adult grasshopper

is able to jump 20x its body length in a single jump, however, our tensegrity, after optimization of stiffness,

only averaged 1.1x of its body length in displacement after 8000 simulation steps. Even in repeated jumps, the

average jump length of the adult American locust during a 20 minute interval was found to be approximately

10 body lengths and the locust jumped for 37% of that time [14]. This is over 1000 body lengths for a locust

in this period. If we were to compare this value to our average values of .17 tensegrity body lengths for 400

time steps where a time step is .05 seconds in simulation and extrapolate the values then 20 minutes would

be 240,000 time steps and the total body lengths moved by a tensegrity would be about 100. However, by this

same scaling, a time interval of 8000 time steps with the same parameter optimization should have produced

3.3 body lengths. Yet, the body lengths were closer to 1.1. This is due to the tensegrity not moving in a straight

line from spring actuation. Juvenile grasshoppers have even better endurance and can jump 4x as many body

lengths as an adult in 20 minutes [14]. Even though a tensegrity robot does not show fatigue as an adult

grasshopper would, the grasshopper still has a greater net distance traveled over extended intervals.

A change in grasshopper size does not correspond to an equivalent change in grasshopper force production

or distance traveled as cuticle stiffness changes throughout their development [12]. In the tensegrity model, if

the spring stiffness is held constant, scaling is not expected to change the force mechanisms. Thus the tensegrity

would be expected to produce an equivalent change in force production and distance traveled with respect to

body length.

In addition, the changes seen in grasshopper force production during development are different from
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spring stiffness changes in tensegrities as their relationships between spring stiffnesses and distances differ.

In grasshoppers there is a general increasing trend of increased cuticle stiffness and jump performance [7].

However, the relationship between spring stiffness and displacement in the tensegrity model did not have

an increasing linear trend. This was seen clearly as higher spring stiffness values did not produce greater

movement forward and the spring stiffness multipliers did not converge to the highest values possible.

We did not directly compare force production of a grasshopper versus the tensegrity robot due to the

different means of force production and energy release. The tensegrity has multiple springs actuating and the

position of the springs leads to much of the energy being dispersed throughout the body. In addition, the

tensegrity actuates its springs several times before it produces movement that moves it forward and increases

its distance traveled. In contrast, the grasshopper pushes down directly at the end of its tibia with the energy

stored in its springs.

7 Future Work

Spring loading affects the optimal spring stiffness for energy storage [13]. Spring loading is comparable to the

amount of time the springs of the tensegrity are actuated via the firing pattern. In the trials done within our

study, the firing pattern and parameters were kept constant. The optimal firing pattern parameters were only

found once for the spring stiffness multiplier of 2. These parameters were then kept constant for the remainder

of the trials. The parameters and spring stiffness were optimized separately due to time constraints in running

the simulation, as adding more parameters to optimize exponentially increases the run time when using the

CMA-ES algorithm. In future work, running optimizations for firing patterns parameters and spring stiffness

multipliers together might produce interesting results. These trials could be accomplished either by allocating

more time to running simulations or using an optimization algorithm that requires less time.

Morphology plays a large role in locomotion effectiveness and patterns. This is seen by the differences in lo-

comotion ability between structurally different organisms. It would be interesting to modify the configuration

of the tensegrity, by adding more struts or modifying it such that it does not have the spherical icosahedron

shape and then run optimizations of spring stiffness on the new configuration. Different configurations may

produce more variations in locomotion through altering the spring stiffnesses. In the current setup, 6 out of

24 of the springs are being actively actuated. Different configurations of tensegrity structures may require less

springs actuated to produce movement, thus requiring less energy to move. Also, these configurations may be

more conducive to movement through altering spring stiffness, thus producing greater displacement values

than the current setup.
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