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Abstract

PIEPER, AIDAN R. Iterated Local Search Algorithms for Bike Route Generation. Department of

Computer Science, March, 2018.

ADVISOR: Matthew Anderson

Planning routes for recreational cyclists is challenging because they prefer longer more scenic routes,

not the shortest one. This problem can be modeled as an instance of the Arc Orienteering Problem (AOP),

a known NP-Hard optimization problem. Because no known algorithms exist to solve this optimization

problem efficiently, we solve the AOP using heuristic algorithms which trade accuracy for speed. We

implement and evaluate two different Iterated Local Search (ILS) heuristic algorithms using an open source

routing engine called GraphHopper and the OpenStreetMap data set. We propose ILS variants which our

experimental results show can produce better routes at the cost of time.
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1 Introduction

Cycling is a popular and diverse activity enjoyed by millions of people all over the world. To some, cycling

is a means of commuting to work while to others it is a recreational sport. The quality of cycling infras-

tructure varies across the globe. In countries like Belgium and the Netherlands where cycling is a popular

recreational sport, there are vast networks of bicycle-friendly secondary roads [16]. However, many places

do not have this same level of cycling infrastructure so bike riders must share highways with other road

vehicles.

Route planning for recreational cyclists poses a fundamentally different problem than traditional route

planning problems because the shortest route is not necessarily the preferable cycling route. Recreational

cyclists generally prefer longer, more scenic, and less trafficked routes as the goal of the activity is recreation

not transportation. When planning routes, recreational cyclists consider different factors such as route dis-

tance, elevation gain, maximum percent gradient, and how pleasant a road is to travel by bike. Designing a

route that fits all user-specified criteria is a difficult task. Moreover, there are no set criteria which determine

a “preferable” cycling route. The desirability of a given route is based on the rider’s personal preferences,

goals, and fitness. This research explores different algorithms for generating cycling routes for recreational

road cyclists.

Most bike rides begin and end in the same location. Using this assumption, this research focuses specifi-

cally on generating preferable circular cycling routes. For example, a cyclist may want a 15-mile route which

starts and ends at their home.

1.1 Motivations

Traditional route planning problems focus mainly on finding a path in a graph optimizing for either short-

est distance or time. There exists many route planning tools such as strava.com, mapmyride.com, and

ridewithgps.com which allow users to add points on a map and generate a route between such destina-

tions. However, none of these tools can fully generate a route without additional user input.

1.2 Related work

In the literature, planning preferable cycling routes is modeled as an instance of the Arc Orienteering Prob-

lem (AOP), a variant of the Orienteering Problem (OP) [16]. First introduced in 1987 by Golden et al., the

classical OP is a combination of node selection and determining shortest paths between nodes in a graph
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Figure 1: Undirected AOP instance with start node S and destinationD. Arc label is (score, cost). Bold path
is optimal for a budget of 10 (score = 30, cost = 10).

[11]. The OP is a hybrid between two classical combinatorial problems, the Knapsack Problem and the

Traveling Salesman Problem1. In the classical OP, each node in the graph is assigned a non-negative score

and a non-negative cost. Given a starting node, a destination node, and some maximum cost budget, the

objective is to determine a non-repeating path which starts at the starting node, visits some subset of the

graph nodes, and ends at the destination node [12]. In addition, the solution path must both maximize

the total collected score, accrued from visiting a node, and keep the total collected cost under the specified

budget.

The AOP is the arc variant of the OP where each arc, i.e., graph edge, is given a score and a cost. In the

AOP, scores and costs are accrued from visiting an arc instead of a node. For example, Figure 1 shows an

undirected AOP instance where S is the start node, D is the destination node, the budget is 10, and every

edge is labeled (score, cost). The shortest path is S → (10, 3)→ (5, 5)→ D which has a cost of 8 and a score

of 15. However, for the specified budget, S → (20, 1)→ (3, 2)→ (2, 2)→ (5, 5)→ D is the optimal solution

with a score of 30 and a cost of 10. The optimal solution is clearly not the shortest path but rather the path

with the maximal score constrained by the cost budget.

Previous research shows that both the OP and the AOP are NP-Hard problems for directed and undi-

rected graphs [12]. No algorithms are known to optimally solve the AOP or OP in polynomial time. While

there is considerable research into the OP and its variants, there is less research into the AOP. Gunawan

et al. provide an exhaustive survey of the OP and its variants, but the AOP is clearly over shadowed by

other OP variants in the literature [12].
1The OP may sometimes be referred to as the Selective Traveling Salesman Problem [13].
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Gavalas et al. [8] show approximation algorithms for the AOP in both directed and undirected graphs.

Approximation algorithms are algorithms to NP-Hard optimization problems that do not produce optimal

answers yet have provable accuracy bounds. A polylogarithmic approximation algorithm is shown for

directed graphs while a (6 + ε+ o(1))-approximation algorithm is shown for undirected graphs [8]. More-

over, they show a reduction from the AOP to the OP. Using an existing OP approximation algorithm by

Nagarajan and Ravi [15], this reduction yields a O( (logm)2

log logm )-approximation algorithm for solving the AOP

in directed graphs where m is the number of edges.

Souffriau et al. [16] study the AOP in the context of cycle trip planning. Souffriau et al. provide an

integer programming mathematical model for the AOP and a greedy randomized adaptive search heuristic

algorithm for solving AOP instances to near optimality in a few seconds. To evaluate performance of their

algorithm, the authors test their algorithm against a road network of bike-friendly roads in East Flanders.

The East Flanders’ bicycle road network covers 5 regions and is comprised of 989 nodes with 2963 arcs for

a total of 3585 km of road. This model for the AOP requires that each node and edge is visited at most once

by the solution path.

Verbeeck et al. [17] consider the cycle trip planning problem in a directed graph. The authors propose

two heuristic algorithms for solving the AOP: A branch-and-cut algorithm and an iterated local search

algorithm. See Section 2.2 for a detailed explanation of iterated local search. Unlike, Souffriau et al., this

model allows the route to visit the same vertex multiple times but visiting the same arc twice is not allowed.

A two-way road can be travelled exactly once in each direction since it is modeled by two separate edges

in the directed graph. Both algorithms were evaluated by running them on the East Flanders road network

dataset provided by Souffriau et al.

Similarly, research by Bergman and Oksanen [6] defines the “Circular Cycle Tour Problem” as a cycle

trip planning problem where the start and end location are the same. Like other cycle routing problems,

they model it as an instance of the AOP. Bergman and Oksanen use a popularity weighted road network

graph using road popularity data from smartphone fitness tracking application sports-tracker.com.

The authors use a tabu search heuristic algorithm for solving their AOP instance.

1.3 Research Question

As mentioned in Section 1.2, existing literature models cycle trip planning as an instance of the AOP. This re-

search follows the existing literature and focuses on implementing and improving existing AOP algorithms

for cycle route planning.

3
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Since road networks can be quite large and because the AOP is NP-Hard, searching for the optimal route

may take an infeasible amount of time. Since we care more about finding a good route than finding the best

possible route, we trade off optimality for speed. However, even AOP approximation algorithms are too

slow for applications where a response time on the order of milliseconds is required, e.g., 300 ms [14].

Therefore, we focus on heuristic algorithms for route generation. Both Verbeeck et al. and Lu and Shahabi

propose heuristic algorithms which follow the Iterated Local Search (ILS) framework. ILS is a heuristic

method for solving many optimization problems. ILS builds a sequence of locally optimal solutions through

repeated applications of a heuristic search algorithm. Our research question is as follows:

To what extent can ILS algorithms be improved to generate better bike routes?

1.4 Our Contribution

In the following sections we refer to the the algorithm proposed by Verbeeck et al. as the VVA Algorithm and

the algorithm proposed by Lu and Shahabi as the LS Algorithm. We implement the VVA and LS algorithms

using an open source routing engine named GraphHopper. We make initial observations by running these

algorithms on a subset of the New York State road network using public mapping data from the Open-

StreetMap foundation. These observations lead us to create four variants of the LS algorithm. We then ran

experiments on a small road network to compare the relative performance of VVA, LS, and our variants. We

also pursue an absolute algorithm evaluation by attempting solve an Integer Program model of the AOP.

Our experimental results show that the LS algorithm is faster than the VVA algorithm but not sub-

stantially. However, the LS algorithm does produce substantially higher scoring routes than VVA. Our LS

variants can produce even higher scoring routes than the baseline LS algorithm but at a cost of time. We are

unable to validate the claimed 300 millisecond response time of the LS algorithm. VVA and LS are solving

slightly different problems since VVA restricts taking a road more than once while LS does not. This may

account for the scoring differences.

The remainder of this thesis explains this research in detail. Section 2 contains background information

on ILS, VVA, and LS. Next, Section 3 discusses our data source, the open source software we used, and our

implementation of VVA and LS including our LS variants. In Section 4 we present our experimental data

and performance analysis using two different ILS stopping criteria. We also discuss an Integer Program-

ming model for the AOP. Finally, we conclude with a summary of our results and future work.
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2 Preliminaries

First, we discuss how to model preferable cycling routes and then heuristics for solving the AOP. Recall

that Iterated Local Search (ILS) is a heuristic method for solving many optimization problems. We explain

the abstract idea of ILS and then we explain how ILS is used in both the VVA and LS algorithms. The

VVA algorithm uses a simple depth-first-search with additional checking. The LS algorithms uses a greedy

search with spatial techniques to reduce the search space.

2.1 Modeling Preferability of Cycling Routes

Recreational cyclists consider many factors when designing a preferable cycling route. The following is a

non-exhaustive list of such factors:

• Route distance

• Route elevation gain

• Time

• Maximum percent gradient

• Amount of traffic

• Number of intersections

• Good cellular service

• Easy parking at start

• Availability of restrooms

• Availability of rest stops

• Scenery

• Proximity to bike shops

• Proximity to mass transit

• Limited uphill at end of ride

Many of these factors can be modeled nearly identically. For example, distance, elevation gain, and time

are all calculated by the sum of those weights over all roads in the route. On the other hand, maximum per-

cent gradient can be seen as a “Boolean criterion.” That is, a road’s steepness is either under the maximum

percent gradient or over, in which case the road does not satisfy this criterion. If these Boolean criteria must

be avoided, a simple option is to initially remove all roads from the graph which do not meet these criteria.

In previous research, the cost of a particular arc is usually the length of the road and the score is some

measure of the preferability of the road. Since the AOP requires a single value for the cost and score of each

arc, computing costs and scores as linear combinations of different features is a one way to model multiple

factors. For example, a particular road’s cost might be a combination of its length, its elevation gain, and the

level of traffic on the road. This allows one to give certain factors more importance by weighting them more

heavily in the linear combination. Furthermore, one might want to avoid certain Boolean criteria instead of

outlawing them entirely. For instance, one could avoid dirt roads by giving them higher costs.

While multiple route factors are important to recreational cyclists, the focus of this research is not to
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model the preferability of roads. Hence, we assume that we have the necessary data to appropriately score

roads for recreational cyclists. The focus of this research is on the route planning algorithm, not creating

the graph and its associated weights which represents the AOP instance.

2.2 Iterated Local Search

Iterated Local Search (ILS) is a framework for solving optimization problems using heuristic search algo-

rithms. A heuristic is a technique used to solve a problem quickly when exact or approximation methods

are too slow. Heuristic algorithms can be thought of as “shortcuts” in that they trade optimality and com-

pleteness for speed. Heuristics are often used in search algorithms to determine which branch of the search

to take but are not guaranteed to produce the best solution. A heuristic algorithm is commonly referred to

as a heuristic.

Local Search is a heuristic method for solving optimization problems. Local Search starts with a can-

didate solution and moves to a higher scoring solution as defined by an objective function which scores

solutions in the search space [10]. Local Search can get stuck in local optima which are points in the search

space that are better than all similar solutions but are not the best possible solution.

ILS is a variant of Local Search that attempts to stop it from getting trapped in local optima. Instead

of repeating random trials of the heuristic algorithm, ILS builds a sequence of locally optimal solutions

generated by the heuristic which is more likely to lead to a better overall solution [10]. This is done by first

generating an initial solution using the search heuristic, perturbing the current solution, and applying the

search heuristic again on the modified solution. The perturbation and local search steps are then repeated

until some condition, usually time, is met. Algorithm 1 outlines the ILS framework.

Algorithm 1: ILS(t, localsearch, score)
Data: t: a time,
localsearch: a heuristic search function,
score: an objective function,
perturb: a function which modifies the solution.
Result: A solution of the localsearch function.

1 S← localsearch(empty solution)
2 while t seconds have not elapsed do
3 S∗ ← perturb(S)
4 S′ ← localsearch(S∗)
5 if score(S′) > score(S) then
6 S ← S′

7 return S

6
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Figure 2: Arc feasibility checking

Despite its simplicity, ILS can be challenging to implement effectively because many implementation

choices are left to the developer. For example, an effective ILS implementation requires a certain level of

domain specific knowledge. The main issue with ILS is that the algorithm may still get “trapped” in a local

maximum over many iterations. Therefore, the modification step must modify the solution enough to make

progress but not too much that the search is effectively starting with a different “random” solution upon

each iteration.

2.3 VVA Algorithm

Verbeeck et al. propose an ILS algorithm which uses a modified version of depth-first search (Algorithm 2)

as its local search heuristic. It is implemented as a recursive function that finds a path between two discon-

nected nodes in the bike route. The algorithm is allowed to “take” a road and add it to the current route

as long as it has not been traversed before and the shortest path from the end of the traversed arc to the

destination is less than the remaining distance budget after taking the arc (Line 4). In other words, it must

be feasible to get from the end of the chosen arc to the desired destination after traversing the arc (Figure 2).

Since this requires many shortest path computations, the VVA algorithm assumes that all-pairs shortest

path have been pre-computed before the ILS runs. In Algorithm Algorithm 2, the function shortestPath(v1, v2)

would return the pre-computed shortest path. In addition, the maxDepth parameter is used to restrict the

depth of the search and reduce the search space (Line 1).

Using this DFS algorithm as the local search heuristic Verbeeck et al., apply the ILS framework to create

a bike route planning algorithm. Algorithm 3 first generates an initial route using the DFS heuristic and

stores the path in the variable route (Line 2). The ILS perturbs the solution by removing a road from the

solution and invoking the DFS procedure to find a new local solution (Lines 11 to 16). In the perturbation

phase, the algorithm removes R consecutive arcs starting at the arc at position A in the running solution

route. If a new path is found after removing a path segment from the solution, then the new path is merged

into the current solution (Line 17). If no new path with score improvement can be found A and R are both

7



Algorithm 2: DFS(route, s, d, dist, minProfit, maxDepth)
Data: route: a temporary solution,
s: the start node of the path,
d: the end node of the path,
dist: the maximum cost of the route,
minProfit: the minimum score of the route,
maxDepth: the maximum number of edges allowed in the solution,
shortestPath(v1, v2): a function which returns the shortest distance between two nodes of the
graph,
edges(v1): a function which returns all edges of a node.
Result: A boolean which denotes whether a path was found. If true, the solution is contained inside

of route.
1 if maxDepth < 0 then
2 return false

3 for arc ∈ edges(s) do
4 if arc 6∈ route and arc.cost+ shortestPath(arc.end, d) < dist then
5 Add arc to route
6 if arc.end = d and route.score > minProfit then
7 return true
8 else if DFS(route, arc.end, d, dist - arc.cost, minProfit, maxDepth - 1) then
9 return true

10 Remove arc from route

11 return false

incremented by 1 (Line 21). This perturbs the solution more and more in an attempt to move the search out

of a local optima.

The main drawback of the VVA algorithm is that the ILS has slow iterations because it is performing

DFS on every iteration. Moreover, it requires many shortest paths to be precomputed before the algorithm

can run. This can be infeasible on large real-world mapping datasets. Since the algorithm assumes all

pairs shortest-path is pre-computed, the feasibility checking used by the search isO(degreemaxDepth) where

degree is the max degree of nodes in the road network and maxDepth is the maximum depth allowed in

the DFS. However, since the DFS returns when it finds any better path not just the best one, this worst case

performance is not typically expected.

2.4 LS Algorithm

The ILS algorithm proposed by Lu and Shahabi aims to solve many of the problems of VVA including slow

iteration and large pre-computation. Instead of relying on pre-computed shortest paths, the LS algorithm

uses online shortest path computations and does less feasibility checking by reducing the search space with

spatial pruning techniques (See Section 2.4.4). In addition, LS uses a greedy path generation algorithm
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Algorithm 3: ILS-VVA(s, d, dist, maxDepth, t)
Data: s: the start node of the path,
d: the end node of the path,
dist: the maximum distance of the path,
maxDepth: the maximum depth allowed in the DFS,
t: a time.
Result: a path.

1 route← empty route
2 if not DFS(route, s, d, dist, 0, maxDepth) then
3 route← empty route

4 A← 1, R← 1
5 while t seconds have not elapsed do
6 temp← copy of route
7 if R > temp.length then
8 R← 1

9 if A+R > temp.length− 1 then
10 R← temp.length− 1−A
11 Remove R arcs from temp starting at arc at index A
12 minScore← sum of scores of removed arcs from temp
13 s∗ ← starting node of first arc removed
14 d∗ ← ending node of last arc removed
15 new ← empty route
16 if DFS(new, s∗, d∗, dist - temp.dist, minScore, maxDepth) then
17 Merge new into temp at index A
18 route← temp
19 A← 1, R← 1

20 else
21 A← A+ 1, R← R+ 1

22 return route

9



instead of DFS.

2.4.1 Attractive Arcs

LS models a solution route in terms of “attractive arcs” which are arcs with a positive score. A path from

node v1 to v2 is a series of attractive arcs which starts with a1, ends with an and is denoted by, (v1  a1  

a2  . . .  an  v2). The symbol  denotes the shortest path in the graph between two nodes or arcs.

The path between two adjacent attractive arcs (ai  ai+1) is known as a “blank path segment” and is the

shortest path from the end vertex of ai to the start vertex of ai+1. These vertices are respectively denoted

li.start and li.end where li is the shortest path. Given an attractive arc ai from a solution path, ai.pre refers

to the previous attractive arc (ai−1) and ai.post refers to the next attractive arc in the path (ai+1).

To build a solution, the LS algorithm connects many attractive arcs together using shortest path blank

path segments. The total cost of a path is the sum of all costs of all the arcs in the path, including the arcs

in the blank path segments. The score of a path is the sum of all attractive arcs excluding any attractive arcs

which may be in blank path segments.

2.4.2 Candidate Arc Set

Every arc a in the solution route S is associated with a set of candidate attractive arcs that it could be

replaced with. Arcs are taken out of these sets in order to generate a path between two vertices.

Definition 1 ([14]). Let a ∈ S be an arc in the solution route S. Let B be the distance budget. Then the Candidate

Arc Set (CAS) of a, denoted by a.CAS is the set of arcs who have a positive score and can feasibly replace a in S, i.e.

∀ac ∈ a.CAS, ac.score > 0 and (a.pre ac  a.post).cost < B − S.cost+ (a.pre a a.post).

Lu and Shahabi show that candidate arc sets have the following inherited closure property. This allows

the search space to be reduced when computing some CASs since the parent CAS can be restricted.

Lemma 1 ([14]). Let a be an arc. ∀ac ∈ a.CAS, ac.CAS ⊆ a.CAS.

To choose which candidate arcs to add to the solution, Lu and Shahabi propose a criterion called “Qual-

ity Ratio” which is defined for an arc from a candidate arc set. The intuition is that arcs with higher value

and lower cost will be more likely to improve the solution. In order to determine which arcs to remove from

the solution in the ILS perturbation, they propose a criteria called “Improve Potential”. The intuition is that

solution arcs with lower scores and more valuable nearby arcs are more likely to improve the solution. See

Section A.2 for more information.
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Algorithm 4 performs the feasibility checking to generate a set of candidate arcs which can be used to

connect a start node v1 to a destination node v2. The algorithm takes in a set of possible arcs, iterates over

each one, and adds the arc to the current CAS only if its score is positive and the distance of the path from

v1 to a to v2 is within the specified budget (Lines 4 to 7). In addition, the Quality Ratio is calculated for

the specified arc in the CAS (Line 6). If the CAS, A, passed into the algorithm is non-empty, then it can use

the “CAS inherit” property and filter out arcs whose paths are within the new specified budget. If the CAS

passed in is non-empty, then the algorithm will iterate over all arcs in the graph to find the ones which can

be feasibly inserted (Lines 2 to 3).

Algorithm 4: computeCAS(G, A, v1, v2, dist)
Data: G: the road network graph,
A: a candidate arc set,
v1: start node,
v2: destination node,
dist: allowable budget.
Result: A set of candidate arcs.

1 CAS ← empty set
2 if A is empty then
3 A← all arcs from G

4 for a ∈ A do
5 if a.score > 0 and (v1  a v2).cost ≤ dist) then // Feasibility checking
6 a.qr = QualityRatio(v1, v2, a)
7 add a to CAS

8 return CAS

If arcs are added to the current solution, then the route’s distance changes as well as the remaining

budget. For the new arcs added, computing the respective CASs using Algorithm 4 suffices. However, the

previous arcs in the solution need to have their CASs changed since the remaining distance budget is now

different. Algorithm 5 takes in two budget values, newDist and oldDist. If the new budget is smaller than

the old budget, there may be some arcs in our CAS whose paths are too long for the new budget. Therefore,

the algorithm employs CAS inheritance and restricts the current CAS by removing the arcs which can no

longer be feasibly inserted with the new budget (Lines 2 to 5). If the new budget is larger than our old

budget, then the algorithm expands the CAS by checking the feasibility of all arcs in the graph (Lines 6

to 9).
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Algorithm 5: updateCAS(A, a, v1, v2, newDist, oldDist)
Data: A: set of all arcs in the graph,
a: arc whose CAS needs to be updated,
v1: node in current path before a,
v2 : node in current path after a
Result: An updated set of candidate arcs

1 CAS ← a.CAS
2 if newDist < oldDist then // Restrict CAS using inherit property
3 for e ∈ a.CAS do
4 if (v1  e v2).cost > newDist then
5 remove e from CAS

6 else if newDist > oldDist then // Expand CAS by checking all edges from graph
7 for e ∈ A do
8 if e 6∈ CAS and e.score > 0 and (v1  e v2).cost ≤ newDist then
9 add e to CAS

10 return CAS

2.4.3 ILS Formulation

The local search method used by LS is a greedy algorithm. It continuously inserts feasible arcs from a CAS

at the closest blank path segment until the budget is exhausted or there are no more CAS arcs. The LS ILS

algorithm removes a random arc from the solution using the heuristic scoring metric “Improve Potential”

and uses the greedy local search to fill the gap in the path. If a new path is found, it is inserted into the

route and the CAS of each arc is computed or updated accordingly. See Section A.1 for details on this path

generation algorithm and how it is used in the ILS.

2.4.4 Spatial Pruning Techniques

While LS relies on the “CAS inherit” property to restrict the search space, it still has to do a lot of processing

to generate the initial CAS or update CASs when the budget expands. To address this issue, Lu and Shahabi

propose an “ellipse pruning” technique to reduce the number of arcs which need to be checked.

An ellipse is a curve such that for every point on the curve, the sum of the distances to the two focal

points is constant. Consider the scenario where there are two graph nodes v1 and v2 in which the desired

path between the two has a budget of b. Furthermore, consider the ellipse whose focal points are the two

nodes and whose sum of the distances to the two focal points is b (Figure 3). For all points p on the ellipse

(v1  p  v2).cost = b where the shortest path is the straight line Euclidean distance. Therefore, if there

is an arc a which connects v1 to v2 and contains a point po outside of the ellipse, we know that a.cost > b

12



v1 v2

a

Ellipse(v1, v2, b)

Figure 3: Illustration of Lu and Shahabi’s ellipse pruning technique. The goal is to connect v1 to v2 with a
path of budget b. The arc a is excluded from the search since it contains a point outside of the ellipse and is
therefore infeasible. [14].

since (v1  po  v2).cost > b. This criteria is used to prune arcs from the search space when calculating or

updating CASs.

3 ILS Implementation

We implement the VVA and LS algorithms and evaluate them on real world road networks. This section

discusses the technical details of our implementation. We first discuss our data source, the open source

software used, and road scoring metrics. Then we explain the choices made in both our VVA and LS

implementations. Finally this section concludes with observations of our implementations and we propose

four new LS variants based on these observations.

3.1 OpenStreetMap

We use the crowd-sourced open mapping dataset provided by the OpenStreetMap (OSM) foundation2[5].

However, the OSM map format is an XML-based schema which is not trivially translatable into a road

network graph. Luckily, in addition to open data, OSM includes a collection of open source software which

interface with the data. Because the goal of this research is not to translate raw OSM data into a usable

graph representation, we used software that already has this parsing capability in order to implement both

ILS algorithms. Because OSM is a crowdsourced dataset, its level of accuracy varies across the world which

is the main drawback to using this data.

2OSM provides a free mapping dataset for the entire planet. A full world map is around 56GB.
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Metadata Value Meaning
-3 “Avoid at all cost”
-2 “Only use to reach your destination, not well suited”
-1 “Better take another way”
0 “As well as other ways around.”
1 “Prefer”
2 “Very nice way to cycle”
3 “This way is so nice, it pays out to make a detour also if this means taking many

unsuitable ways to get here.”

Table 1: OSM bicycle routing hints. Taken directly from the OSM wiki [5].

3.1.1 Map Metadata

Some OSM roads (known as “ways” in OSM parlance) contain metadata used to help bicycle routing but it

is not guaranteed to be available. This bicycle routing hint is a value which is used to express the desirability

of a road (Table 1). However, the OSM wiki notes that these values “should not be used where other

attributes3 are considered adequate description” [5].

3.2 GraphHopper

We use GraphHopper as the starting point for our research. GraphHopper is an open source routing en-

gine written in Java which can download and parse raw OSM data into a usable graph representation [2].

On top of data parsing, GraphHopper provides a web server and webpage front-end which are useful for

visualizing and running routing algorithms (Figure 4). Internally, GraphHopper has a number of built-in

pathfinding algorithms including A* and Dijkstra which can be used for routing. These algorithm imple-

mentations provide a good template for implementing other routing algorithms with GraphHopper.

Additionally, GraphHopper supports multiple “routing profiles” which modify the weights of roads

based on a particular vehicle. This is used to give preference to certain roads that are more suited for a

particular vehicle. GraphHopper’s default bike routing profile contains code for giving the normalized

“priority” value of a road. A normalized priority value is one of the 7 values contained in Table 1 normal-

ized to a 0 to 1 scale with 1 being more preferable. When determining the priority of a road, this routing

profile also considers other road metadata such as road speed and road surface. GraphHopper will use

the other metadata if bicycle specific routing hints are not available. We use this normalized priority value

calculated by GraphHopper as our road scoring mechanism. A road’s cost is simply its distance in meters.

3Example attributes include number of lanes, maximum speed, and incline.
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Figure 4: GraphHopper web frontend. This is OpenStreetMap data overlaid with the shortest path from
Union College to Saratoga Springs.
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3.2.1 Contraction Hierarchies

GraphHopper supports a special type of graph preprocessing called contraction hierarchies [2]. The goal

of contraction hierarchies is to preprocess the graph such that subsequent shortest path queries can be

computed more quickly but still provably correct. This is done by ordering nodes by some importance

value and then iteratively “contracting” the least important node. Contracting a node v means replacing

shortest paths through v with new shortcut edges [9]. A faster shortest path search can be obtained by run-

ning a bidirectional shortest-path search making sure that the forward direction only traverses edges going

to more important nodes and the backward direction only traverses edges coming from more important

nodes.

When running the GraphHopper server for the first time, the engine processes the raw OSM data into

a graph and builds contraction hierarchies for each of the enabled routing profiles. This contraction step

may take many minutes depending on the size of the graph. We use GraphHopper’s built-in contraction

hierarchy based shortest path algorithm4 for calculating shortest paths in both our VVA implementation

and LS implementation.

3.3 VVA Implementation

Our Java implementation of the VVA algorithm differs very little from the pseudocode provided by Ver-

beeck et al. Our implementation does not have a set of starting locations nor does it retain the four best

initial solutions. Rather, the starting location is fixed and only the single highest scoring solution is retained

between iterations. These choices both simplify our implementation and make the ILS closer to that of the

LS algorithm. Our local search heuristic is still a recursive DFS with a maximum depth parameter that

performs arc feasibility checking.

Another difference in our implementation is how we check arc feasibility. Instead of pre-computing

all-pairs shortest path, we use GraphHopper’s built in contraction hierarchies and do an online shortest-

path computation. This is slower than assuming all shortest paths have been pre-computed. However, this

requires far less computation before our algorithm starts. In addition, we can leverage GraphHopper’s fast

and correctly implemented shortest-path algorithms without writing our own pre-processing code. Since

we are routing on a contraction hierarchy graph, we need to make sure to ignore the special “shortcut”

edges added in the contraction phase. Our road scoring mechanism is GraphHopper’s normalized priority

value and road costs are distances in meters.
4GraphHopper’s default algorithm is bidirectional Dijkstra’s algorithm.
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Figure 5: Example route produced by our implementation of the VVA algorithm.

Figure 6: Quick turns in VVA example route. Inset in Figure 5
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3.4 LS Implementation

Compared to the the VVA algorithm, the LS algorithm is more complex and so our implementation differs

more from the pseudocode provided by Lu and Shahabi. There are many more implementation choices to

be made. Recall that this algorithm works by connecting together attractive arcs with shortest paths known

as blank path segments.

Implicitly defined in the LS algorithm is an object which represents the solution built up through itera-

tions. We call this object a “route” and provide a unified interface for adding and removing arcs from this

path. When adding and removing arcs, internally the object maintains the blank path segment invariant by

calculating shortest paths and storing these paths. When it is time to return the actual path to GraphHop-

per, the Route object simply iterates over stored attractive arcs and shortest paths (blank path segments)

in order. Since we are using a contraction hierarchy shortest path algorithm to compute the blank path

segments, we recursively “unpack” any shortcuts (to get the original roads) before returning the solution

to GraphHopper.

Our Candidate Arc Set (CAS) computation also differs in the way we spatially fetch arcs. We perform

a breath first search starting at our start node only continuing our search outward if a given road is inside

of our pruning ellipse. When the search returns, we have a list of all arcs that are contained solely inside of

the pruning ellipse. We compute CAS feasibility of these arcs using the same contraction hierarchy shortest

path algorithm used to calculate blank path segments. Our scores and costs are identical to those used in

our VVA implementation.

3.4.1 Implementation Observations

We ran our ILS implementations on OSM data of upstate New York to examine the generated routes. Fig-

ure 5 shows an example route generated by the VVA algorithm. Since this algorithm is deterministic, run-

ning the same query multiple times gives the same result. In this case, the generated route contains three

quick turns in succession which can be dangerous for cyclists as they need to cross traffic lanes (Figure 6).

However, since the LS algorithm is randomized, running the same query multiple times produces dif-

ferent routes. Figure 7a shows a circular route. However, a route with these characteristics is not always

generated by the algorithm. Running the same query may produce a route such as Figure 7b. The route in

Figure 7b contains two subpaths which extend outward and return on the same path like cul-de-sacs. In

the most extreme case, shown in Figure 7c, the route is solely composed of these “backtracking” subpaths.

Backtracking occurs because attractive arcs are glued together by shortest paths. The shortest path back
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(a) Circular route (b) Route with some backtracking

(c) Route with excess backtracking

Figure 7: Example routes generated by our LS implementation with GraphHopper.

after taking an attractive arc may be the same path taken to get to the arc’s start.

This backtracking shown in Figure 7 may be undesirable for cyclists. While riding on the same road

more than once is not inherently undesirable for recreational cyclists, this can pose a safety issue. Following

a route with excess backtracking may result in U-turns which can be dangerous for cyclists. However, not

all backtracking creates U-turns.

Our implementation the LS algorithm in GraphHopper lead us to the following observations about the

algorithm:

1. LS does not avoid backtracking when creating blank path segments or when computing arc feasibility.

2. LS tries to get as close to the cost budget as possible.
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3. LS puts very few restrictions on what is considered an attractive arc.

4. LS does not penalize turns.

3.5 Our LS Variants

We introduce a few variants of LS to address the observations explained in Section 3.4.1.

3.5.1 Budget Allowance

The LS local search algorithm makes the greedy choice to insert a candidate arc at the smallest blank path

segment in the route. This function continuously inserts candidate arcs until the CAS is empty or the cost

budget is exhausted. This means that the path returned by LS will normally be very close to the maximum

cost.

The intuition is if the initial route generated by LS is very close to the budget, then there may not be

enough budget remaining to make big changes to the route. Therefore, the ILS may get stuck in a local

optimum. The “budget allowance” variant aims to solve this by leaving more budget for later iterations

of the search. Given a fixed percentage 0 < p < 1, this variant ensures that LS is only allowed to use

p ·RemainingBudgetwhen constructing the path at any given iteration. This variant addresses observation

2.

3.5.2 Incremental Budget

The “incremental budget” variant is similar to the “budget allowance” variant and aims to solve the same

problem. However, instead of using a fixed budget percentage, it has a minimum budget percentage

pmin. Over the course of the ILS iterations, the allowed budget scales from pmin to 1 in increments of

(1− pmin)/iterations. The intuition is that while we want to save budget for later iterations, we shouldn’t

heavily restrict the budget as we near the termination of the ILS. This variant addresses observation 2.

3.5.3 Arc Restrictions

This variant changes how arcs are chosen to be included in a CAS to address observation 3. In the baseline

LS implementation, attractive arcs are arcs whose score is greater than zero. This variant takes in two

parameters minRoadLength and minRoadScore. An arc is only considered attractive and added to the

CAS if its distance in meters is greater than minRoadLength and its score is greater than minRoadScore.
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The intuition behind these restrictions is that the algorithm should not route to an attractive arc that is very

short and has a meager score. Similarly, for a particular arc, the distance spent to traverse it should be

worthwhile and this is generally true of longer arcs with higher scores.

3.5.4 No Backtracking

This variant attempts to address observation 1 shown in Figure 7 by “blacklisting” roads from the short-

est path computations. As the algorithm builds up intermediate solutions, we keep track of all the arcs

currently in the solution using a HashSet. We stop the shortest path algorithm from using any blacklisted

roads during its search. When calculating the blank path segment away from the attractive arc, we need

to blacklist not only the roads in the solution but the roads in the first blank path segment as well. This

approach has two key implementation details which we address.

First, blacklisting roads may break the shortest path computation. In a connected graph there is always

some shortest path between any two nodes. However, if we restrict which roads are allowed in the search

then it is possible that we may have no shortest path. For example, consider an attractive arc at the end of

a dead end road. Computing the first blank path segment to the arc will succeed but we cannot take the

same path back so we have no return segment. In the case where we have no available blank path segment,

we set the total path cost to infinity. This means that the arc will no longer be included in the CAS since it

cannot feasibly update any arcs.

Second, this blacklisting process does not work well with contraction hierarchies. Recall that a contraction-

hierarchy shortest-path algorithm traverses over contracted “shortcut” edges in the graph. The actual re-

turned shortest path is recreated by finding the original roads which these shortcuts skip over. When de-

termining if a road is blacklisted in our shortest path traversal, we need to check whether our current road

is a shortcut and if it is, make sure none of the roads it skips are also blacklisted. This is quite challenging

since a shortcut may skip multiple roads and may skip other shortcut edges. This means that we need to

recursively “unpack” a shortcut (and any skipped shortcuts) before we can determine if we should avoid

the arc. This is effectively undoing all the pre-computation that is done when the contraction hierarchy is

initialized. In order to avoid this problem, our no-backtracking variant does not use a contraction hierarchy

shortest-path algorithm and instead uses bidirectional Dijkstra’s algorithm which is slower.
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4 Data

We ran a series of experiments to evaluate the performance of the VVA algorithm, the LS algorithm, and

our LS variants. This section discusses our data set and data collection process.

4.1 Map Data

Our mapping data set is a OpenStreetMap file5 corresponding to 350 square kilometers centered around

Galway, NY. We chose this dataset because it is relatively small and is moderately road dense. The size

of the road network was also chosen to make an Integer Programming evaluation feasible. See Section 6

for more information on this approach. The free online tool BBBike Extract [1] was used to obtain the data.

When parsed by GraphHopper, the internal graph representation contains 2425 directed arcs and 982 nodes.

4.2 Data Collection

We ran 500 trials of each algorithm configuration (Table 2) fixing the start location, the cost budget, and the

number of ILS iterations. To achieve circular routes, the start and end location was fixed at GPS position

(43.009327,−74.009166), the center of our OSM data set. The cost budget was fixed at 40 kilometers. The

number of iterations was fixed at 100. Our experiments use unit scoring. Thus, if two roads of different

length have the same priority value by GraphHopper then they have the same score which is its priority

value directly. These choices are mostly arbitrary. The iteration number and cost budget were chosen to be

similar to the experimental tests run by Verbeeck et al. and Lu and Shahabi.

The ILS algorithms were modified to record the current solution score and elapsed time at each itera-

tion. These values were written to a single CSV file for each algorithm configuration. For each configura-

tion, average scores and average times were calculated using pivot tables with Python and Pandas6. The

experimental runs were performed on a computer with 4 Intel Xeon E5620 processors and 16GB of RAM

running Ubuntu 16.04.03 LTS Desktop.

5 Experimental Results

First, we present images of example routes generated by our LS variants (Figure 8). In Section 5.1 we

present our performance data using the iteration number as the cutoff. Lastly, in Section 5.2 we analyze a

5In Protocolbuffer Binary Format (.pbf). PBF is an alternative to the XML format which provides better compression.
6A Python package for data manipulation and analysis.
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Algorithm Extra Parameters
VVA maxDepth = 20
LS N/A
LS + (Budget Allowance) pmin = 0.5
LS + (Incremental Budget) pmin = 0.5
LS + (Arc Restrictions) minRoadLength = 1km, minRoadScore = 0.5
LS + (No Backtracking) N/A
LS + (Budget Allowance) + (Arc Restrictions) minRoadLength = 1km, minRoadScore = 0.5, pmin = 0.5

Table 2: Experimental algorithm configurations

(a) Example route generated by LS + (Arc Restrictions) (b) Example route generated by LS + (No Backtracking)

Figure 8: Example routes generated by our LS variants implemented with GraphHopper.

more efficient ILS stopping criterion.

5.1 Iteration Cutoff

Table 3 shows the average times and scores of each algorithm configuration after 100 iterations. Indepen-

dent plots of score and time versus iteration number are shown in Figure 9b. A combined plot of variant

score versus log of time is shown in Figure 10.

Our results validate the performance of the baseline LS algorithm compared to the VVA algorithm. VVA

has a number of substantial limitations. First, VVA has small score improvement at each iteration because

it completes a number of idle iterations with no improvement (Figure 9a). The “wavy” time plot is a con-

sequence of the ILS perturbation phase. Recall that if no route improvement is found, VVA increases the

number of contiguous arcs that it removes. This means that on these iterations, the DFS search must find

a longer path which takes more time. VVA has small score improvement because it simply runs DFS and
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(c) LS + (Budget Allowance)
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(e) LS + (Arc Restrictions)
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(f) LS + (No Backtracking)

Figure 9: Algorithm performance with unit scoring.
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Algorithm Score Time (s) Score/Time Ratio
VVA 20.57 20.37 1.00
LS 126.13 1.20 105.10
LS + (Budget Allowance) 215.87 23.12 9.33
LS + (Incremental Budget) 282.66 119.52 2.36
LS + (Arc Restrictions) 49.85 0.09 553.88
LS + (No Backtracking) 33.36 0.60 55.6
LS + (Budget Allowance) + (Arc Restrictions) 32.49 2.37 13.70

Table 3: Algorithm performance after 100 iterations with unit scoring.

checks to see if the solution after inserting an arc has improved score and is still within the cost budget.

It does not consider the value or cost of the path segment being removed. Secondly, VVA has slow itera-

tion because it has a large DFS search space. Even with a maximum depth search parameter, substantial

feasibility checking is required, especially for road dense areas. At the end of 100 iterations, our VVA im-

plementation produces a route in 20 seconds (Table 3). Third, VVA requires all-pairs shortest path to be

precomputed which can be infeasible for large graphs. This is not an issue with our implementation since

we are using contraction hierarchies which requires less pre-computation.

Our LS baseline implementation produces a route with 6 times the score of VVA in less than 1.5 seconds

(Table 3). In addition, it performs very few idle iterations (Figure 9b). This shows that the spatial pruning

techniques and heuristics for modifying the solution work well together to both improve overall score and

reduce the time required. LS finds an initial solution which is better than VVA’s final route and slowly

improves over the subsequent iterations.

The data shows that our intuition behind the budget allowance variant was correct. Saving cost budget

for later iterations generates a route with 70% score improvement when compared to the baseline algorithm.

However, this variant pays a big penalty in time because the route generation time is nearly 20 times longer.

The incremental budget variant produces an even higher score than budget allowance, but the time required

to produce such a route is 100 times that of the LS baseline. Since the remaining budget is not decreasing

sharply after the first iteration, these variants have to spend time computing and updating larger CASs.

The two final LS variants, arc restrictions and no backtracking, have the same fault. They run much

faster than the baseline but this is because after the first iteration they do no work. Both variants pose strict

limitations on which arcs are allowed in the CAS. After the first iteration, the initial CAS gets pruned to the

empty set so no route changes can be made. Both of these variants beat VVA’s score at a minuscule fraction

of the required time. However, neither comes close to LS baseline’s score. Combining budget allowance
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Algorithm Score Time (s) Score/Time Ratio
VVA 19.28 1.01 19.08
LS 113.93 0.67 170.0
LS + (Budget Allowance) 192.95 10.39 18.57
LS + (Incremental Budget) 1.14 1.29 0.88
LS + (Arc Restrictions) 49.92 0.06 832
LS + (No Backtracking) 33.37 0.61 54.70
LS + (Budget Allowance) + (Arc Restrictions) 30.80 0.88 35

Table 4: Algorithm performance with unit scoring and score-cutoff.

and arc restrictions variants does not lead to a variant with high score that runs fast. While its score is above

the VVA algorithm, it is even lower than the no backtracking variant.

If we consider score to time ratio, then the arc restrictions variant wins out among all the algorithms.

This ratio can be interpreted as the efficiency of the algorithm given its time usage. The arc restrictions

variant has a score to time ratio of over 500, 5 times better than the baseline LS. While the variant’s final

score is not as good as the baseline, it can produce a route roughly half as good in a small fraction of the

time.

5.2 Score Cutoff

The ILS trials in Section 5.1 are naive because they use a fixed iteration number as the algorithm stopping

criterion. Many of these algorithms spend later iterations idle with no score improvement. Instead of using

a fixed stopping criterion, we can terminate the algorithm based on score improvement over time.

We use the data from Section 5.1 to simulate the stopping point of the algorithms with this halting

method. At each iteration, we calculate the percent change of the score from the previous iteration. If the

score improvement is less than 1% for three consecutive iterations, then the algorithm terminates.

This technique culls large periods of wasteful time. The VVA algorithm’s time drops from 20 seconds to

1 second while retaining 94% of its score (Table 4). Similarly, the LS baseline algorithm time is nearly halved

while retaining 90% of its score. With this stopping criterion the VVA algorithm now runs runs roughly 300

milliseconds slower than the LS baseline. While there is no substantial time difference between the two, the

score of the LS baseline is nearly 6 times as great. This suggests that the heuristics which LS uses to choose

arcs are effective at producing a high scoring solution.

The assumption in this stopping criterion is that small score improvement over successive iterations is

likely to continue. Therefore, it is not effective with ILS variants which have small value improvement at
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the start. For example, this criterion quickly halts the LS Incremental Budget variant before it can get any

meaningful score improvement. This can be seen in the small score slope at early iterations in Figure 9d.

The short cutoff suggests that either the our chosen cutoff is not good or that too small a budget is not

productive at improving the route.

With this stopping criterion, the score to time ratio improves for all but the incremental budget and no

backtracking variants. This means that generally the algorithms are spending less idle time with no score

improvement. The VVA ratio improves from 1 to 19 and the arc restriction variant ratio improves from 553

to 832.

6 Integer Programming Evaluation

In the previous section, we evaluate performance of the ILS algorithms using relative scores and times.

Since these are heuristic algorithms, this approach is required because we do not know the optimal route

given our data. Integer Programming (IP) is a model for finding exact answers to optimization problems

such as the AOP. Given an exact solution to our AOP instance, we can assign our heuristic algorithm an

absolute accuracy measure which shows how close the heuristic is to the best possible answer.

6.1 Integer Programming Definition

Many optimization problems maximize or minimize an objective given limited resources and competing

constraints. If the objective can be written as a linear function of variables and the constraints written as

equalities or inequalities on those variables then we have a Linear Programming (LP) problem [7]. The

goal of the LP is to find some assignment to the variables that satisfies all the constraints while maximizing

or minimizing the objective function. LP is used to model many problems such as planning, routing, and

scheduling.

IP is a special case of LP where all the variables are constrained to use integer values [4]. While LP can

be solved efficiently, the IP variant is NP-Hard. Therefore it is challenging to efficiently find exact answers

to optimization problems using IP.

6.2 Integer Programming model for the AOP

Like many optimization problems, the AOP can be modeled using IP. Verbeeck et al. introduce an IP model

for solving the AOP [17]. We modified the IP model introduced by Verbeeck et al. to only use a single
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starting node rather than a set and removed the minimum score constraint. This is consistent with the

choices made in our ILS implementations.

In the IP model, we are given a directed graph G = (V,A), a start vertex d ∈ V , and a distance budget

B ∈ R. Each arc a ∈ V has a cost ca ∈ R, a profit pa ∈ R and a complementary arc ā ∈ A ∪ {∅}. If two arcs

are available in two directions between a pair of vertices then they are complementary arcs. In addition,

define δ(S) as the set of outgoing arcs from S to V \ S and let λ(S) be the set of incoming arcs to S from

V \ S.

The decision variables variables of the IP are xa ∈ {0, 1}, ∀a ∈ A and zv ∈ Z≥, ∀v ∈ V . If xa = 1 then

arc a is chosen in the route otherwise it is 0. zv represents the number of times a vertex v is visited by the

route. The following is the IP model formulation:

Maximize
∑
a∈A

pa · xa

subject to:

∑
a∈A

ca · xa ≤ B (1)

∑
a∈λ(v)

xa −
∑
a∈δ(v)

xa = 0 ∀v ∈ V (2)

∑
a∈δ(v)

xa = zv ∀v ∈ V (3)

∑
a∈δ(S)

xa ≥
∑
v∈S zv∑

v∈S |δ(v)|
∀S ⊆ V \ {d} (4)

zd = 1 (5)

xa + xā ≤ 1 ∀a ∈ A : ∃ā ∈ A (6)

The objective maximizes the total collected score while Equations (1) to (6) are constraints. Equation (1)

ensures that the total route cost is within the specific budgetB. Equations (2) and (3) ensure that for vertices

in the solution, the number of outgoing and incoming arcs are equal in the route and equal to the number of

times a vertex is visited. These can be thought of as “flow constraints” limiting the route to contiguous arcs.

With these constraints thus far, a valid solution to the IP may produce two disconnected loops. We want

a single contiguous route. Equation (4) is a sub-tour constraint ensuring that there are no disconnected

components of the route. This constraint operates on all subsets of the vertex set. Equation (5) ensures the

the start vertex d is visited exactly once and Equation (6) ensures that an arc is taken in exactly one direction.
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With Equation (6), the model is comparable to the no backtracking LS variant.

6.3 Gurobi Implementation

Given our road graph, we want to solve this IP model to find an exact solution to our AOP instance. We

implement a Java program to model and solve these constraints using Gurobi [3], a commercial optimiza-

tion solver. GraphHopper was used as a Java library to read the graph data. The graph data was then used

to create the variables and constraints using the Gurobi Java API.

Equation (4) was the most challenging constraint to implement since it is a constraint on all subsets

of vertices. Because V may be quite large and there are 2n subsets of a set of size n, there are too many

subsets to enumerate all possible constraints. Luckily, many optimization solvers have “lazy” constraints

to address this problem. Lazy constraints operate differently than normal constraints because they are not

immediately evaluated. Gurobi will ignore a lazy constraint until it finds a solution which satisfies the

other constraints then it checks to see if its solution violates the lazy constraint. If so, then a new constraint

based on the lazy constraint is added to the IP and Gurobi continues searching. This process continues until

Gurobi finds a solution which does not violate the lazy constraint.

We implemented Equation (4) with a lazy constraint in Gurobi. This is done by giving a callback function

to Gurobi which will be called whenever an feasible solution is found. The callback must determine if the

lazy-constraint is violated and if so, add a new constraint to the model. This constraint is violated whenever

we have a disconnected sub-tour. To check if we have a sub-tour, we find the vertices that we can reach

from the start vertex using only the arcs chosen by the decision variables xa by performing a DFS. If the

reachable vertices are not all the vertices in the solution, then we have a disconnected sub-tour. The non-

reachable vertices form the S ⊆ V which violates Equation (4). This set is converted into a new constraint

for the IP inside of the lazy constraint callback.

For the problem instances we experimented on, we were unable to get our Gurobi program halt and

produce a valid optimal answer after multiple days of computation. We believe that there is some subtle

bug in our implementation rather than lacking enough computation power because our Gurobi program

succeeded for small test graphs. Verbeeck et al. solve their IP model using CPLEX, another optimization

solver, and their graph takes about 6 hours. Since our graph is of comparable size, we would expect Gurobi

to take around that long to solve our IP assuming similar computation power.
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7 Conclusion

This research studied algorithms for generating bike routes for recreational road cyclists. We followed

existing literature and formulated the problem as an instance of the AOP, a NP-Hard optimization problem.

We focused on implementing and evaluating two ILS heuristic algorithms [17] [14] for the AOP using open

source mapping tools. When using naive ILS stopping criteria, our experimental results validate previous

work by [14] by showing that spatial techniques are effective at reducing the search space and speeding

up the route generation time. When using smarter ILS stopping criteria, our results show that spatial

techniques may not drastically speed up the search. However, the other heuristics proposed by [14] do

lead to much higher scoring routes. Some of our proposed ILS variants lead to higher scoring routes but

at the penalty of longer generation time. When comparing score to time ratio, our arc restrictions variant

is substantially better than that of either baseline ILS algorithm. While our variant’s route score is not the

best, this ratio shows that it is very efficient at producing a good scoring route given its time usage.

7.1 Future Work

With more time, we hope to run additional experimental tests of the algorithm variants. In our tests, the

road graph, starting location and cost budget are fixed. More tests should be run varying all three of

these parameters to see if our results generalize. We hope to continue work on our Gurobi Integer Program

solution to get an optimal route score as a baseline. This will allow us give absolute accuracy measurements

of the algorithms as opposed to relative comparisons.

Road scoring mechanisms have much room for improvement. In our research, we used GraphHopper’s

built-in bike preferability value as the road score. This choice was practical as it allowed us to focus on the

algorithms themselves instead of building the road graph. However, since this scoring relies on metadata

from OpenStreetMaps, this scoring may be inaccurate. Further research could work on improving road

scoring by using other datasets such as road popularity among cyclists. In addition, changing the scoring

metrics may change how these algorithms perform.

All of our experimental tests were performed on powerful desktop computers. Future research could

work on implementing these ILS algorithms on a mobile phone. With some performance tuning, we think

that it is possible to generate routes in real time on a phone.
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Appendices

A LS Algorithm

This appendix discusses the details of the LS algorithm not covered in Section 2.4. Section A.1 explains the

path generation algorithm and how it in the LS ILS algorithm. Section A.2 explains the heuristic metrics

used to determine which arcs should be added and removed when performing the ILS.
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A.1 Path Generation

Algorithm 6 is the local search heuristic used by the LS algorithm (Algorithm 7). Its goal is to produce a

path which connects the start vertex s with the destination vertex d whose total cost is within the budget

dist and total score is greater than minProfit. The algorithm builds the path by choosing candidate arcs

from the CAS A.

Algorithm 6 first instantiates a fake arc starting and ending at the specified endpoints with a cost and

score of 0 (Line 1). This fake arc is used to instantiate the solution to return, route (Line 2). It then obtains a

set of arcs to insert by filtering the CAS A by choosing arcs whose quality ratio is higher than the average

(Line 3). While there are still possible arcs left to insert and the path has budget left, arcs are continuously

removed from the CAS and inserted into the current solution route (Lines 4 to 15). The algorithm inserts

these candidate arcs into the path using a greedy approach. It chooses the closest blank path segment in the

solution to insert the arc into the path (Lines 6 to 12).

Algorithm 6: generatePath(s, d, dist, minProfit, A)
Data: s: a start node of the path,
d: the end node of the path,
dist: the path’s budget,
minProfit: minimum score of the path,
A: candidate arc set to choose arcs from.
Result: a path which fits the specified criteria.

1 af ← (s, d, 0, 0) // Arc with endpoints s & d with cost & score of 0
2 route← {af}
3 arcs← all arcs from A whose quality ratio is above the average
4 while arcs is not empty and route.cost < dist do
5 e← remove random arc from arcs
6 l← empty blank path segment
7 minDist← 0
8 for li ∈ blank path segments of route do
9 dist← (li.start e li.end).cost

10 if dist < minDist then
11 l← li
12 minDist← dist

13 path← (l.start e l.end)
14 if path.cost ≤ dist− route.cost+ l.cost then // Our path can feasibly replace l
15 insert path into route at blank path segment l

16 if route.score > minProfit then
17 return route

18 else
19 return empty route
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Algorithm 7 uses the ILS framework and generates the final bike route. First, the algorithm checks to

see if the shortest path from the start to the destination is within the budget and if so then it runs the ILS. If

not, it returns an empty solution (Lines 1 to 2). The ILS first initializes a fake arc with endpoints s & d and a

cost of dist and a score of 0 (Line 4) then computes the CAS of this arc (Line 5). This arc is used to initialize

the temporary solution (Line 6).

While the time limit t has not elapsed, the algorithm chooses arcs from the solution to be removed

based on their improve potential, removes them from the solution, then uses generatePath to find a new

path which closes the gap (Line 7-Line 11). If generatePath can find a path to close the gap, then it needs

to update the CAS of all the arcs in the solution. For the new arcs from generatePath being added to the

solution, the candidate arc sets must be computed (Line 18). On the other hand, arcs already in the solution

must have their CASs updated (Line 20) since the remaining budget will have changed by adding the new

path segment.

A.2 Arc Choice Heuristics

These heuristic scoring metrics are used by the LS algorithm to guide the perturbation and path generation

phases of the ILS. Quality Ratio is defined for an arc from a CAS of a ILS solution. It is used to determine

which arcs from the CAS will be chosen to add to the route to better improve its score. Improve Potential

is used to determine which arcs to remove from the current solution so that new paths are more likely to

improve the score of the route.

B ILS Implementation Code

This appendix contains Java code of our GraphHopper implementation.

B.1 VVA Code

Listing 1: code/ils/vva/Arc.java

,

1 package com . graphhopper . rout ing . i l s . vva ;

2

3 import j ava . u t i l . Ob jec ts ;

4

5 /∗∗
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Algorithm 7: ILS-LS(t, s, d, dist, G)
Data: t: a time,
s: the start node of the path,
d: the end node of the path,
dist: the maximum cost of the route,
G: the graph of the road network.
Result: a path

1 if (s d).cost > dist then
2 return empty route

3 else
4 af ← (s, d, dist, 0) // Arc with endpoints s & d with cost dist and score 0
5 af .CAS ← computeCAS(G, {}, s, d, dist)
6 solution← {af}
7 while t seconds have not elapsed do
8 arcs← all arcs from solution whose improve potential is above the average
9 e← remove a random arc from arcs

10 b1 ← solution.cost+ e.cost // Budget after removing e from solution
11 path← generatePath(e.pre, e.post, b1, e.score, e.CAS)
12 if path is not empty then
13 remove e from solution
14 insert path into solution between e.pre and e.post
15 for a ∈ route do
16 b2 ← solution.cost+ a.cost // Budget after removing a from solution
17 if a ∈ path or a = e.pre or a = e.post then
18 a.CAS = computeCAS(G, a.CAS, a.pre, a.post, b2)

19 else
20 a.CAS = updateCAS(G, a.CAS, a.pre, a.post, b1, b2)

21 return route
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Algorithm 8: QualityRatio(a.pre, a.post, ac)
Data: ac: arc from candidate arc set,
a.pre: previous arc in solution,
a.post: next arc in solution.
Result: a number.

1 score← (a.pre ac  a.post).score
2 cost← (a.pre ac  a.post).cost
3 return score/cost

Algorithm 9: ImprovePotential(a)
Data: a: a solution arc
Result: a number.

1 score← 0
2 maxDist← 0
3 dist← (a.pre a a.post).cost
4 for e ∈ a.CAS do
5 score← score+ (e.score− a.score)
6 maxDist← max(maxDist, (a.pre e a.post).cost)

7 return score/(maxDist− dist)

6 ∗ C l a s s which c o n t a i n s m e t a d a t a a b o u t a p a r t i c u l a r edge in t h e graph . Used by

7 ∗ {@link Route} and {@link V V A I t e r a t e d L o c a l S e a r c h}

8 ∗ /

9 c l a s s Arc {

10 f i n a l i n t edgeId , baseNode , adjNode ;

11 f i n a l double cost , score ;

12

13 Arc ( i n t edgeId , i n t baseNode , i n t adjNode , double cost , double score ) {

14 t h i s . edgeId = edgeId ;

15 t h i s . baseNode = baseNode ;

16 t h i s . adjNode = adjNode ;

17 t h i s . c o s t = c o s t ;

18 t h i s . s core = score ;

19 }

20

21 @Override

22 public S t r i n g t o S t r i n g ( ) {

23 return "Arc{" +

24 "edgeId=" + edgeId +

25 ’}’ ;

26 }

27

28 @Override

29 public boolean equals ( Object o ) {

30 i f ( t h i s == o ) return true ;
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31 i f ( o == null | | getClass ( ) != o . ge tClass ( ) ) return f a l s e ;

32 Arc arc = ( Arc ) o ;

33 return edgeId == arc . edgeId &&

34 baseNode == arc . baseNode &&

35 adjNode == arc . adjNode ;

36 }

37

38 @Override

39 public i n t hashCode ( ) {

40

41 return Objec ts . hash ( edgeId , baseNode , adjNode ) ;

42 }

43 }

Listing 2: code/ils/vva/Route.java

,

1 package com . graphhopper . rout ing . i l s . vva ;

2

3 import com . c a r r o t s e a r c h . hppc . IntHashSet ;

4 import com . graphhopper . rout ing . i l s . I l s P a t h ;

5 import com . graphhopper . rout ing . weighting . Weighting ;

6 import com . graphhopper . s torage . Graph ;

7

8 import j ava . u t i l . ArrayLis t ;

9 import j ava . u t i l . L i s t ;

10

11 /∗∗

12 ∗ O b j e c t which r e p r e s e n t s a pa th c r e a t e d by t h e {@link V V A I t e r a t e d L o c a l S e a r c h} a l g o r i t h m .

13 ∗ /

14 f i n a l c l a s s Route {

15 private Lis t<Arc> a r c s ;

16 private IntHashSet edges ;

17 private double c o s t ;

18 private double score ;

19

20 Route ( ) {

21 a r c s = new ArrayList<>() ;

22 edges = new IntHashSet ( ) ;

23 }

24

25 / / Copy c o n s t r u c t o r

26 private Route ( Route route ) {

27 c o s t = route . c o s t ;

28 score = route . score ;

29 a r c s = new ArrayList<>(route . a r c s ) ;
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30 edges = route . edges . c lone ( ) ;

31 }

32

33

34 void addEdge ( i n t edgeId , i n t baseNode , i n t adjNode , double cost , double score ) {

35 a r c s . add (new Arc ( edgeId , baseNode , adjNode , cost , score ) ) ;

36 edges . add ( edgeId ) ;

37 t h i s . c o s t += c o s t ;

38 t h i s . s core += score ;

39 }

40

41 void removeEdge ( i n t edgeId ) {

42 for ( i n t i = a r c s . s i z e ( ) − 1 ; i >= 0 ; i−−) {

43 Arc arc = a r c s . get ( i ) ;

44 i f ( arc . edgeId == edgeId ) {

45 a r c s . remove ( i ) ;

46 edges . remove ( edgeId ) ;

47 c o s t −= arc . c o s t ;

48 score −= arc . score ;

49 break ;

50 }

51 }

52 }

53

54 Arc removeEdgeIndex ( i n t index ) {

55 Arc arc = a r c s . remove ( index ) ;

56 edges . remove ( arc . edgeId ) ;

57 c o s t −= arc . c o s t ;

58 score −= arc . score ;

59 return arc ;

60 }

61

62 void c l e a r ( ) {

63 a r c s . c l e a r ( ) ;

64 edges . c l e a r ( ) ;

65 c o s t = 0 ;

66 score = 0 ;

67 }

68

69 Route copy ( ) {

70 return new Route ( t h i s ) ;

71 }

72

73 boolean containsEdge ( i n t edgeId ) {

74 return edges . conta ins ( edgeId ) ;

75 }
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76

77 void inser tRoute ( Route other , i n t index ) {

78 a r c s . addAll ( index , other . a r c s ) ;

79 edges . addAll ( other . edges ) ;

80 c o s t += other . c o s t ;

81 score += other . score ;

82 }

83

84 void b l a c k l i s t ( Route other ) {

85 edges . addAll ( other . edges ) ;

86 }

87

88 I l s P a t h getPath ( Graph graph , Weighting costWeighting , Weighting scoreWeighting , i n t s , i n t d ) {

89 I l s P a t h path = new I l s P a t h ( graph , costWeighting , scoreWeighting ) ;

90 for ( Arc arc : a r c s ) {

91 path . processEdge ( arc . edgeId , arc . adjNode , arc . edgeId ) ;

92 }

93 return ( I l s P a t h ) path

94 . setEndNode ( d )

95 . setFromNode ( s )

96 . setFound ( ! a r c s . isEmpty ( ) ) ;

97 }

98

99 public double getCost ( ) {

100 return c o s t ;

101 }

102

103 public double getScore ( ) {

104 return score ;

105 }

106

107 public i n t length ( ) {

108 return a r c s . s i z e ( ) ;

109 }

110

111 }

Listing 3: code/ils/vva/VVAIteratedLocalSearch.java

,

1 package com . graphhopper . rout ing . i l s . vva ;

2

3 import com . graphhopper . rout ing . AbstractRoutingAlgorithm ;

4 import com . graphhopper . rout ing . Di jks t raBid i rec t ionCH ;

5 import com . graphhopper . rout ing . Path ;

6 import com . graphhopper . rout ing . RoutingAlgorithm ;
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7 import com . graphhopper . rout ing . i l s . B ikePr ior i tyWeight ing ;

8 import com . graphhopper . rout ing . i l s . I l sAlgor i thm ;

9 import com . graphhopper . rout ing . i l s . I l s P a t h ;

10 import com . graphhopper . rout ing . i l s . I t e r a t i o n ;

11 import com . graphhopper . rout ing . u t i l . D e f a u l t E d g e F i l t e r ;

12 import com . graphhopper . rout ing . u t i l . E d g e F i l t e r ;

13 import com . graphhopper . rout ing . u t i l . TraversalMode ;

14 import com . graphhopper . rout ing . weighting . Weighting ;

15 import com . graphhopper . s torage . Graph ;

16 import com . graphhopper . u t i l . EdgeExplorer ;

17 import com . graphhopper . u t i l . E d g e I t e r a t o r ;

18 import com . graphhopper . u t i l .PMap;

19 import com . graphhopper . u t i l . Parameters ;

20

21 import s t a t i c com . graphhopper . u t i l . Parameters . Routing . ∗ ;

22

23 /∗∗

24 ∗ Routing Algor i thm which impl ements t h e b i k e r o u t e I t e r a t e d L o c a l S e a r c h a l g o r i t h m from t h e f o l l o w i n g p a p e r :

25 ∗ h t t p s : / / www. s c i e n c e d i r e c t . com / s c i e n c e / a r t i c l e / p i i / S1366554514000751

26 ∗ /

27 public c l a s s VVAIteratedLocalSearch extends AbstractRoutingAlgorithm implements I l sAlgor i thm {

28

29 private f i n a l double MAX COST;

30 private f i n a l double MIN COST ;

31 private f i n a l i n t MAX DEPTH;

32 private f i n a l i n t MAX ITERATIONS ;

33

34 private Graph CHGraph ; / / CH D i j k s t r a s e a r c h

35 private E d g e F i l t e r l e v e l E d g e F i l t e r ; / / Used f o r CH D i j k s t r a s e a r c h

36 private Weighting scoreWeighting ;

37

38 private boolean i s F i n i s h e d = f a l s e ;

39 private i n t s , d ;

40 private I t e r a t i o n [ ] i t e r a t i o n s ;

41 private E d g e F i l t e r b i k e E d g e F i l t e r ;

42

43 /∗∗

44 ∗ @param graph s p e c i f i e s t h e graph where t h i s a l g o r i t h m w i l l run on

45 ∗ /

46 public VVAIteratedLocalSearch ( Graph graph , Weighting weighting ,

47 E d g e F i l t e r l e v e l E d g e F i l t e r , PMap params ) {

48 super ( graph . getBaseGraph ( ) , weighting , TraversalMode . EDGE BASED 1DIR ) ;

49

50 CHGraph = graph ;

51 t h i s . l e v e l E d g e F i l t e r = l e v e l E d g e F i l t e r ;

52 scoreWeighting = new BikePr ior i tyWeight ing ( f lagEncoder ) ;
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53 b i k e E d g e F i l t e r = new D e f a u l t E d g e F i l t e r ( f lagEncoder ) ;

54

55 MAX COST = params . getDouble (MAX DIST , DEFAULT MAX DIST) ;

56 MIN COST = params . getDouble ( MIN DIST , DEFAULT MIN DIST) ;

57 MAX DEPTH = params . g e t I n t (SEARCH DEPTH, DEFAULT SEARCH DEPTH) ;

58 MAX ITERATIONS = params . g e t I n t ( Parameters . Routing . MAX ITERATIONS, DEFAULT MAX ITERATIONS) ;

59

60 i t e r a t i o n s = new I t e r a t i o n [MAX ITERATIONS ] ;

61 }

62

63 @Override

64 public Path ca lcPath ( i n t from , i n t to ) {

65 checkAlreadyRun ( ) ;

66 s = from ;

67 d = to ;

68 return runILS ( ) ;

69 }

70

71 private Path runILS ( ) {

72 Route s o l u t i o n = i n i t i a l i z e ( ) ;

73 s o l u t i o n = improve ( s o l u t i o n ) ;

74 i s F i n i s h e d = t rue ;

75 return getPath ( s o l u t i o n ) ;

76 }

77

78 private I l s P a t h getPath ( Route s o l u t i o n ) {

79 return s o l u t i o n . getPath ( graph , weighting , scoreWeighting , s , d ) ;

80 }

81

82 private Route improve ( Route s o l u t i o n ) {

83 long s t a r t = System . currentTimeMil l i s ( ) ;

84 Route newPath = new Route ( ) ;

85 i n t a = 1 , r = 1 , count = 0 ;

86 while ( count < MAX ITERATIONS) {

87 double score = getPath ( s o l u t i o n ) . getScore ( ) ;

88 Route temp = s o l u t i o n . copy ( ) ;

89 i n t s i z e = temp . length ( ) ;

90

91 i f ( r > s i z e ) {

92 r = 1 ;

93 }

94

95 i f ( a + r > s i z e − 1) {

96 r = s i z e − 1 − a ;

97 }

98
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99 / / Remove a r c s a − r

100 double minScore = 0 ;

101 i n t s t a r t I d = s , endId = d ;

102 for ( i n t i = 0 ; i < r ; i ++) {

103 Arc arc = temp . removeEdgeIndex ( a − 1) ;

104 minScore += arc . score ;

105

106 i f ( i == 0) {

107 s t a r t I d = arc . baseNode ;

108 }

109

110 i f ( i == r − 1) {

111 endId = arc . adjNode ;

112 }

113 }

114

115 / / Don ’ t a l l o w s e a r c h t o t r a v e r s e r o a d s a l r e a d y in our pa th

116 newPath . b l a c k l i s t ( temp ) ;

117 i f ( l o c a l S e a r c h ( newPath , s t a r t I d , endId , MAX COST − temp . getCost ( ) ,

118 minScore , MAX DEPTH) ) {

119 temp . inser tRoute ( newPath , a − 1) ;

120 s o l u t i o n = temp ;

121 a = 1 ;

122 r = 1 ;

123 } e lse {

124 a ++;

125 r ++;

126 }

127

128 long elapsed = System . currentTimeMil l i s ( ) − s t a r t ;

129 i t e r a t i o n s [ count ] = new I t e r a t i o n ( score , elapsed / 1 0 0 0 . 0 ) ;

130

131 / / C l e a r temp pa th so we can use i t a g a i n

132 newPath . c l e a r ( ) ;

133 count ++;

134 }

135

136 return s o l u t i o n ;

137 }

138

139 private Route i n i t i a l i z e ( ) {

140 Route route = new Route ( ) ;

141

142 i f ( ! l o c a l S e a r c h ( route , s , d , MAX COST, 0 , MAX DEPTH) ) {

143 route . c l e a r ( ) ;

144 }
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145

146 return route ;

147 }

148

149 private boolean l o c a l S e a r c h ( Route route , i n t s , i n t d , double dis t ,

150 double minProfi t , i n t maxDepth ) {

151 i f ( maxDepth == 0) {

152 return f a l s e ;

153 }

154

155 / / Using e d g e E x p l o r e r from baseGraph f o r t r a v e r s a l ( non−CH v e r s i o n )

156 EdgeExplorer explorer = graph . createEdgeExplorer ( b i k e E d g e F i l t e r ) ;

157 E d g e I t e r a t o r e d g e I t e r a t o r = explorer . setBaseNode ( s ) ;

158

159 while ( e d g e I t e r a t o r . next ( ) ) {

160 i n t currentEdge = e d g e I t e r a t o r . getEdge ( ) ;

161

162 i f ( route . containsEdge ( currentEdge ) ) {

163 continue ;

164 }

165

166 double edgeCost = e d g e I t e r a t o r . ge tDis tance ( ) ;

167 i n t nextNode = e d g e I t e r a t o r . getAdjNode ( ) ;

168

169 double remainingDist = d i s t − edgeCost ;

170 double s h o r t e s t D i s t = s h o r t e s t P a t h ( nextNode , d ) ;

171

172 i f ( s h o r t e s t D i s t >= remainingDist ) {

173 continue ;

174 }

175

176 double edgeScore = scoreWeighting

177 . calcWeight ( e d g e I t e r a t o r , fa lse , nextNode ) ;

178

179 route . addEdge ( currentEdge , s , nextNode , edgeCost , edgeScore ) ;

180

181 i f ( nextNode == d &&

182 route . getCost ( ) >= MIN COST &&

183 route . getScore ( ) > minProf i t ) {

184 return true ;

185 } e lse i f ( l o c a l S e a r c h ( route , nextNode , d , remainingDist ,

186 minProfi t , maxDepth − 1) ) {

187 return true ;

188 }

189

190 route . removeEdge ( currentEdge ) ;
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191 }

192

193 return f a l s e ;

194 }

195

196 /∗∗

197 ∗ Returns t h e s h o r t e s t d i s t a n c e in m e t e r s be tween two nodes o f t h e graph .

198 ∗ /

199 private double s h o r t e s t P a t h ( i n t s , i n t d ) {

200 RoutingAlgorithm search =

201 new Di jks t raBid i rec t ionCH (CHGraph ,

202 weighting , TraversalMode .NODE BASED)

203 . s e t E d g e F i l t e r ( l e v e l E d g e F i l t e r ) ;

204

205 Path path = search . ca l cPath ( s , d ) ;

206 return path . getDis tance ( ) ;

207 }

208

209 / / Unused

210 @Override

211 public i n t getVisitedNodes ( ) {

212 return 0 ;

213 }

214

215 @Override

216 protected boolean f i n i s h e d ( ) {

217 return i s F i n i s h e d ;

218 }

219

220 / / Unused

221 @Override

222 protected Path e x t r a c t P a t h ( ) {

223 return null ;

224 }

225

226 @Override

227 public I t e r a t i o n [ ] g e t I t e r a t i o n I n f o ( ) {

228 return i t e r a t i o n s ;

229 }

230 }

B.2 LS Code

Listing 4: code/ils/ls/Arc.java
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,

1 package com . graphhopper . rout ing . i l s . l s ;

2

3 import com . graphhopper . u t i l . P o i n t L i s t ;

4

5 import j ava . u t i l . ArrayLis t ;

6 import j ava . u t i l . L i s t ;

7

8 /∗∗

9 ∗ C l a s s which c o n t a i n s m e t a d a t a a b o u t a p a r t i c u l a r edge in t h e graph . Used by

10 ∗ t h e ILS a l g o r i t h m s .

11 ∗ <p>

12 ∗ In t h e ILS−CAS a l g o r i t h m t h i s r e p r e s e n t s an ” a t t r a c t i v e a r c ” .

13 ∗ /

14 public c l a s s Arc {

15 public s t a t i c f i n a l i n t FAKE ARC ID = −1;

16

17 public f i n a l i n t edgeId , baseNode , adjNode ;

18 public f i n a l double cost , score ;

19 public f i n a l P o i n t L i s t points ; / / P o i n t s a l o n g t h e a r c

20

21 public double improvePotential , q u a l i t y R a t i o ; / / M e t r i c s used by ILS a l g o r i t h m

22 private Lis t<Arc> cas ; / / C a n d i d a t e Arc S e t o f t h i s a r c

23

24 /∗∗

25 ∗ C o n s t r u c t o r f o r c r e a t i n g a new Arc o b j e c t .

26 ∗

27 ∗ @param e d g e I d The ID o f t h e c u r r e n t edge in t h e graph .

28 ∗ @param baseNode The node ID o f t h e f i r s t node which t h i s a r c c o n n e c t s .

29 ∗ @param adjNode The node ID o f t h e s e c o n d nod which t h i s a r c c o n n e c t s .

30 ∗ @param c o s t The d i s t a n c e o f t h e road , in m e t e r s .

31 ∗ @param s c o r e The s c o r e o f t h e a r c .

32 ∗ @param p o i n t s P o i n t s on t h e map o f t h e a r c .

33 ∗ /

34 public Arc ( i n t edgeId , i n t baseNode , i n t adjNode , double cost , double score , P o i n t L i s t points ) {

35 t h i s . edgeId = edgeId ;

36 t h i s . baseNode = baseNode ;

37 t h i s . adjNode = adjNode ;

38 t h i s . c o s t = c o s t ;

39 t h i s . s core = score ;

40 t h i s . po ints = points ;

41 improvePotent ia l = −1;

42 q u a l i t y R a t i o = −1;

43 cas = new ArrayList<>() ;

44 }

45

46



46 @Override

47 public S t r i n g t o S t r i n g ( ) {

48 return "Arc{" +

49 "edgeId=" + edgeId +

50 ’}’ ;

51 }

52

53 /∗∗

54 ∗ Gets t h e C a n d i d a t e Arc S e t o f t h e c u r r e n t Arc .

55 ∗

56 ∗ @return CAS

57 ∗ /

58 public Lis t<Arc> getCas ( ) {

59 return cas ;

60 }

61

62 /∗∗

63 ∗ Updates t h e C a n d i d a t e Arc S e t o f t h e c u r r e n t Arc .

64 ∗

65 ∗ @param c a s C a n d i d a t e Arc S e t t o u pd a t e .

66 ∗ /

67 public void setCas ( L i s t<Arc> cas ) {

68 t h i s . cas = cas ;

69 }

70

71 @Override

72 public boolean equals ( Object o ) {

73 i f ( t h i s == o ) return true ;

74 i f ( o == null | | getClass ( ) != o . ge tClass ( ) ) return f a l s e ;

75

76 Arc arc = ( Arc ) o ;

77

78 return edgeId == arc . edgeId && baseNode == arc . baseNode && adjNode == arc . adjNode ;

79 }

80

81 @Override

82 public i n t hashCode ( ) {

83 i n t r e s u l t = edgeId ;

84 r e s u l t = 31 ∗ r e s u l t + baseNode ;

85 r e s u l t = 31 ∗ r e s u l t + adjNode ;

86 return r e s u l t ;

87 }

88 }

Listing 5: code/ils/ls/normal/Route.java

47



,

1 package com . graphhopper . rout ing . i l s . l s . normal ;

2

3 import com . graphhopper . rout ing . Path ;

4 import com . graphhopper . rout ing . i l s . I l s P a t h ;

5 import com . graphhopper . rout ing . i l s . l s . Arc ;

6 import com . graphhopper . rout ing . weighting . Weighting ;

7 import com . graphhopper . s torage . Graph ;

8 import com . graphhopper . u t i l . E d g e I t e r a t o r S t a t e ;

9 import com . sun . i s t a c k . i n t e r n a l . NotNull ;

10 import org . s l f 4 j . Logger ;

11 import org . s l f 4 j . LoggerFactory ;

12

13 import j ava . u t i l . ArrayLis t ;

14 import j ava . u t i l . I t e r a t o r ;

15 import j ava . u t i l . L i s t ;

16

17 /∗∗

18 ∗ O b j e c t which r e p r e s e n t s a pa th c r e a t e d by t h e {@link L S I t e r a t e d L o c a l S e a r c h}

19 ∗ a l g o r i t h m .

20 ∗ /

21 c l a s s Route implements I t e r a b l e<Arc> {

22

23 private f i n a l Logger logger = LoggerFactory . getLogger ( ge tClass ( ) ) ;

24

25 private Graph graph ;

26 private Weighting timeWeighting ;

27 private Weighting scoreWeighting ;

28 private S h o r t e s t P a t h C a l c u l a t o r sp ;

29 private f i n a l i n t s , d ; / / S t a r t & End Node IDs

30 private f i n a l double MAX COST;

31

32 private Lis t<Arc> a r c s ; / / L i s t o f ” a t t r a c t i v e a r c s ” in t h e Route

33 private Lis t<Path> blankSegments ; / / L i s t o f s h o r t e s t p a t h s c o n n e c t i n g non−c o n t i g u o u s a t t r a c t i v e a r c s .

34 private double cost , score ; / / Current

35

36 private Route ( S h o r t e s t P a t h C a l c u l a t o r s h o r t e s t P a t h C a l c u l a t o r , Graph graph , Weighting timeWeighting ,

37 Weighting scoreWeighting , i n t s , i n t d , double maxCost ) {

38 sp = s h o r t e s t P a t h C a l c u l a t o r ;

39 a r c s = new ArrayList<>() ;

40 blankSegments = new ArrayList<>() ;

41 c o s t = 0 ;

42 score = 0 ;

43 t h i s . s = s ;

44 t h i s . d = d ;

45 t h i s . graph = graph ;
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46 t h i s . timeWeighting = timeWeighting ;

47 t h i s . scoreWeighting = scoreWeighting ;

48 MAX COST = maxCost ;

49 }

50

51 /∗∗

52 ∗ S t a t i c f a c t o r y method f o r c r e a t i n g a new Route i n s t a n c e .

53 ∗

54 ∗ @param sp I n t e r f a c e which can c a l c u l a t e S h o r t e s t Pa ths .

55 ∗ @param graph Graph .

56 ∗ @param w e i g h t i n g Weight ing used t o c a l c u l a t e d i s t a n c e o f added a r c s .

57 ∗ @param s c o r e W e i g h t i n g Weight ing used t o c a l c u l a t e s c o r e o f added a r c s .

58 ∗ @param s S t a r t Node ID .

59 ∗ @param d End Node ID .

60 ∗ @return New Route I n s t a n c e .

61 ∗ /

62 s t a t i c Route newRoute ( @NotNull S h o r t e s t P a t h C a l c u l a t o r sp , @NotNull Graph graph ,

63 @NotNull Weighting weighting , @NotNull Weighting scoreWeighting ,

64 i n t s , i n t d , double maxCost ) {

65 return new Route ( sp , graph , weighting , scoreWeighting , s , d , maxCost ) ;

66 }

67

68 /∗∗

69 ∗ Adds t h e s p e c i f i e d Arc t o t h e Route a t t h e s p e c i f i e d i n d e x .

70 ∗ Throws {@link IndexOutOfBoundsExcept ion} i f i n d e x <= 0 or i n d e x > {@link Route # l e n g t h ( ) } .

71 ∗

72 ∗ @param i n d e x Index t o i n s e r t Arc .

73 ∗ @param a r c Arc t o i n s e r t .

74 ∗ /

75 void addArc ( i n t index , @NotNull Arc arc ) {

76 i n t length = length ( ) ;

77 i f ( index < 0 | | index > length ) {

78 throw new IndexOutOfBoundsException ( S t r i n g . format ("index %d, length %d" , index , length ) ) ;

79 }

80

81 updatePathSegments ( index , arc , arc ) ;

82 a r c s . add ( index , arc ) ;

83 c o s t += arc . c o s t ;

84 score += arc . score ;

85 }

86

87 /∗∗

88 ∗ Removes t h e f i r s t i n s t a n c e o f t h e s p e c i f i e d Arc from t h e Route .

89 ∗

90 ∗ @param a Arc t o remove .

91 ∗ @return Index o f removed Arc . Returns −1 i f Arc was not in t h e c u r r e n t Route .
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92 ∗ /

93 i n t removeArc ( @NotNull Arc a ) {

94 i n t index = a r c s . indexOf ( a ) ;

95

96 / / S h o r t c i r c u i t i f Arc i s not p r e s e n t in Route

97 i f ( index == −1) {

98 throw new I l legalArgumentException ("Arc is not in route!" ) ;

99 }

100

101 / / Remove two pa th segments sur round ing Arc

102 Path segment1 = blankSegments . remove ( index ) ;

103 Path segment2 = blankSegments . remove ( index ) ;

104 c o s t −= segment1 . getDis tance ( ) ;

105 c o s t −= segment2 . getDis tance ( ) ;

106

107 / / I f we have more than 1 a r c we need t o add a new pa th segment t o j o i n t h e Route

108 i n t length = length ( ) ;

109 i f ( length > 1) {

110 i n t s t a r t = s ;

111 i n t end = d ;

112

113 / / C a l c u l a t e s t a r t / end p o i n t s f o r t h e new b l a n k pa th segment

114 i n t prevIndex = index − 1 ;

115 i f ( prevIndex >= 0 && prevIndex <= length − 1) {

116 s t a r t = a r c s . get ( prevIndex ) . adjNode ;

117 }

118

119 i n t nextIndex = index + 1 ;

120 i f ( nextIndex <= length − 1) {

121 end = a r c s . get ( nextIndex ) . baseNode ;

122 }

123

124 / / C a l c u l a t e and add new path segment

125 Path segment = sp . s h o r t e s t P a t h ( s t a r t , end ) ;

126 blankSegments . add ( index , segment ) ;

127 c o s t += segment . ge tDis tance ( ) ;

128 }

129

130 a r c s . remove ( index ) ;

131 c o s t −= a . c o s t ;

132 score −= a . score ;

133

134 return index ;

135 }

136

137 /∗∗
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138 ∗ Adds t h e s p e c i f i e d Route t o t h e c u r r e n t Route a t t h e s p e c i f i e d i n d e x .

139 ∗ Throws {@link IndexOutOfBoundsExcept ion} i f i n d e x <= 0 or i n d e x > {@link Route # l e n g t h ( ) } .

140 ∗

141 ∗ @param i n d e x Index t o i n s e r t Route .

142 ∗ @param r o u t e Route t o i n s e r t .

143 ∗ /

144 void inser tRoute ( i n t index , @NotNull Route route ) {

145 i n t length = length ( ) ;

146 i f ( index < 0 | | index > length ) {

147 throw new IndexOutOfBoundsException ( S t r i n g . format ("index %d, length %d" , index , length ) ) ;

148 }

149

150 / / Only add Route i f i t i s non−empty

151 i f ( ! route . isEmpty ( ) ) {

152 Arc f i r s t = route . a r c s . get ( 0 ) ;

153 Arc l a s t = route . a r c s . get ( route . length ( ) − 1) ;

154

155 updatePathSegments ( index , f i r s t , l a s t ) ;

156

157 / / We need t o remove t h e i n s e r t e d r o u t e s s t a r t i n g and end ing pa th segments

158 / / We r e c a l c u l a t e t h e new pa th segments be low

159 Path head = route . blankSegments . remove ( 0 ) ;

160 Path t a i l = route . blankSegments . remove ( route . blankSegments . s i z e ( ) − 1) ;

161 route . c o s t −= head . getDis tance ( ) ;

162 route . c o s t −= t a i l . ge tDis tance ( ) ;

163

164 score += route . score ;

165 c o s t += route . c o s t ;

166 a r c s . addAll ( index , route . a r c s ) ;

167 blankSegments . addAll ( index + 1 , route . blankSegments ) ;

168 }

169 }

170

171 /∗∗

172 ∗ Updates t h e b l a n k pa th segments a t t h e s p e c i f i e d i n d e x . Used when add ing a new Arc t o t h e r o u t e .

173 ∗ <p>

174 ∗ 1−2 −−> 1−3−2

175 ∗

176 ∗ @param i n d e x Index o f b l a n k pa th segments t o u pd a t e .

177 ∗ @param l e f t L e f t bound o f t h e Arc t o be i n s e r t e d .

178 ∗ @param r i g h t Right bound o f t h e Arc t o be i n s e r t e d .

179 ∗ /

180 private void updatePathSegments ( i n t index , Arc l e f t , Arc r i g h t ) {

181 i n t length = length ( ) ;

182 i n t s t a r t = s , end = d ;

183
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184 i n t s t a r t I n d e x = index − 1 ;

185 i f ( s t a r t I n d e x >= 0 && s t a r t I n d e x <= length − 1) {

186 s t a r t = a r c s . get ( s t a r t I n d e x ) . adjNode ;

187 }

188

189 i f ( index <= length − 1) {

190 end = a r c s . get ( index ) . baseNode ;

191 }

192

193 Path segment1 = sp . s h o r t e s t P a t h ( s t a r t , l e f t . baseNode ) ;

194 c o s t += segment1 . getDis tance ( ) ;

195

196 Path segment2 = sp . s h o r t e s t P a t h ( r i g h t . adjNode , end ) ;

197 c o s t += segment2 . getDis tance ( ) ;

198

199 / / I f non−empty , remove t h e p r e v i o u s b l a n k pa th segment b e f o r e i n s e r t i n g t h e two new ones

200 i f ( length > 0) {

201 Path removed = blankSegments . remove ( index ) ;

202 c o s t −= removed . getDis tance ( ) ;

203 }

204

205 blankSegments . add ( index , segment2 ) ;

206 blankSegments . add ( index , segment1 ) ;

207 }

208

209

210 /∗∗

211 ∗ Returns t h e c u r r e n t c o s t ( d i s t a n c e ) o f t h e r o u t e in m e t e r s .

212 ∗

213 ∗ @return Sum o f edge d i s t a n c e s in t h e Route .

214 ∗ /

215 double getCost ( ) {

216 return c o s t ;

217 }

218

219 /∗∗

220 ∗ Returns t h e t o t a l s c o r e o f t h e r o u t e .

221 ∗

222 ∗ @return Sum o f a l l a t t r a c t i v e a r c s c o r e s in t h e Route .

223 ∗ /

224 double getScore ( ) {

225 return score ;

226 }

227

228 /∗∗

229 ∗ Returns t h e l e f t o v e r budge t a f t e r s u b t r a c t i n g t h e c u r r e n t Route ’ s c o s t .
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230 ∗

231 ∗ @return Remaining c o s t l e f t in budge t .

232 ∗ /

233 double getRemainingCost ( ) {

234 return MAX COST − c o s t ;

235 }

236

237 /∗∗

238 ∗ C o n v e r t s t h e Route i n t o a Path o b j e c t which GraphHopper can d i s p l a y on a map .

239 ∗

240 ∗ @return F u l l y c o n n e c t e d Path o b j e c t

241 ∗ /

242 I l s P a t h getPath ( ) {

243 I l s P a t h path = new I l s P a t h ( graph , timeWeighting , scoreWeighting ) ;

244

245 / / I f we have a f a k e a r c r e t u r n no pa th

246 i f ( conta ins (new Arc ( Arc . FAKE ARC ID , s , d , 0 , 0 , null ) ) ) {

247 path . setFound ( f a l s e ) ;

248 return path ;

249 }

250

251 for ( i n t i = 0 ; i < blankSegments . s i z e ( ) ; i ++) {

252 Path blank = blankSegments . get ( i ) ;

253 for ( E d g e I t e r a t o r S t a t e edge : blank . calcEdges ( ) ) {

254 path . processEdge ( edge . getEdge ( ) , edge . getAdjNode ( ) , edge . getEdge ( ) ) ;

255 }

256

257 i f ( i < a r c s . s i z e ( ) ) {

258 Arc arc = a r c s . get ( i ) ;

259 path . processEdge ( arc . edgeId , arc . adjNode , arc . edgeId ) ;

260 }

261 }

262

263 path . setEndNode ( d )

264 . setFromNode ( s )

265 . setFound ( ! isEmpty ( ) ) ;

266

267 logger . debug ("Route dist: " + path . getDis tance ( ) + " Route score: " + path . getScore ( ) ) ;

268

269 return path ;

270 }

271

272 private i n t length ( ) {

273 return a r c s . s i z e ( ) ;

274 }

275
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276 /∗∗

277 ∗ Returns whe the r t h e Route has any a r c s in i t .

278 ∗

279 ∗ @return True i f c o n t a i n s arc , e l s e f a l s e .

280 ∗ /

281 boolean isEmpty ( ) {

282 return length ( ) == 0 ;

283 }

284

285 /∗∗

286 ∗ Returns a l i s t o f Arcs from t h e Route whose Improve P o t e n t i a l s c o r e s a r e a b o v e t h e a v e r a g e .

287 ∗

288 ∗ @return Arc l i s t .

289 ∗ /

290 Lis t<Arc> getCandidateArcsByIP ( ) {

291 Lis t<Arc> r e s u l t = new ArrayList<>() ;

292 double avgIP = 0 ;

293 for ( Arc ca : a r c s ) {

294 ca lc ImprovePotent ia l ( ca ) ;

295 avgIP += ca . improvePotent ia l ;

296 }

297 avgIP /= a r c s . s i z e ( ) ;

298

299 for ( Arc ca : a r c s ) {

300 i f ( ca . improvePotent ia l >= avgIP ) {

301 r e s u l t . add ( ca ) ;

302 }

303 }

304

305 return r e s u l t ;

306 }

307

308 /∗∗

309 ∗ C a l c u l a t e s t h e Improve P o t e n t i a l s c o r e o f a g i v e n a r c .

310 ∗

311 ∗ @param a r c Arc t o c a l c u l a t e

312 ∗ /

313 private void ca lc ImprovePotent ia l ( @NotNull Arc arc ) {

314 i n t v1 = getPrev ( arc ) ;

315 i n t v2 = getNext ( arc ) ;

316

317 double score = 0 ;

318 double maxDist = 0 ;

319

320 double d i s t = sp . getPathCost ( v1 , v2 , arc ) ;

321
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322 for ( Arc e : arc . getCas ( ) ) {

323 score += e . score − arc . score ;

324 maxDist = Math . max( maxDist , sp . getPathCost ( v1 , v2 , e ) ) ;

325 }

326

327 double r e s u l t = score / ( maxDist − d i s t ) ;

328

329 / / Hacky f i x f o r NaN v a l u e s

330 i f ( Double . isNaN ( r e s u l t ) | | r e s u l t < 0) {

331 r e s u l t = 0 ;

332 }

333

334 arc . improvePotent ia l = r e s u l t ;

335 }

336

337 /∗∗

338 ∗ Returns t h e Node ID b e f o r e t h e s p e c i f i e d Arc in t h e Route .

339 ∗

340 ∗ @param a Arc

341 ∗ @return Node ID

342 ∗ /

343 i n t getPrev ( @NotNull Arc a ) {

344 i f ( ! conta ins ( a ) ) {

345 throw new I l legalArgumentException ("Arc is not in route!" ) ;

346 }

347

348 i n t index = a r c s . indexOf ( a ) ;

349 return ( index − 1 >= 0) ? a r c s . get ( index − 1) . adjNode : s ;

350 }

351

352 /∗∗

353 ∗ Returns t h e Node ID a f t e r t h e s p e c i f i e d Arc in t h e Route .

354 ∗

355 ∗ @param a Arc

356 ∗ @return Node ID .

357 ∗ /

358 i n t getNext ( @NotNull Arc a ) {

359 i f ( ! conta ins ( a ) ) {

360 throw new I l legalArgumentException ("Arc is not in route!" ) ;

361 }

362

363 i n t index = a r c s . indexOf ( a ) ;

364 return ( index + 1 <= length ( ) − 1) ? a r c s . get ( index + 1) . baseNode : d ;

365 }

366

367 /∗∗
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368 ∗ Returns whe the r t h e s p e c i f i e d Arc i s in t h e Route .

369 ∗

370 ∗ @param a Arc t o query

371 ∗ @return True i f a r c i s in Route , e l s e f a l s e .

372 ∗ /

373 boolean conta ins ( @NotNull Arc a ) {

374 return a r c s . conta ins ( a ) ;

375 }

376

377 /∗∗

378 ∗ Adds t h e s p e c i f i e d a r c t o t h e Route a t t h e s m a l l e s t b l a n k pa th segment as l ong as i t d o e s not go o v e r

t h e

379 ∗ s p e c i f i e d budge t .

380 ∗

381 ∗ @param a r c Arc t o i n s e r t .

382 ∗ /

383 void insertArcAtMinPathSegment ( @NotNull Arc arc ) {

384 / / We have a t l e a s t 1 a r c and 2 b l a n k pa th segments

385 i f ( ! isEmpty ( ) ) {

386 i n t pathIndex = −1;

387 double minPathValue = Double .MAX VALUE;

388 / / Find s m a l l e s t b l a n k pa th segment

389 for ( i n t i = 0 ; i < blankSegments . s i z e ( ) ; i ++) {

390 double value = blankSegments . get ( i ) . ge tDis tance ( ) ;

391 i f ( value < minPathValue ) {

392 minPathValue = value ;

393 pathIndex = i ;

394 }

395 }

396

397 i n t s t a r t = pathIndex == 0 ? s : a r c s . get ( pathIndex − 1) . adjNode ;

398 i n t end = pathIndex == length ( ) ? d : a r c s . get ( pathIndex ) . baseNode ;

399

400 i f ( sp . getPathCost ( s t a r t , end , arc ) <=

401 getRemainingCost ( ) + minPathValue ) {

402 addArc ( pathIndex , arc ) ;

403 }

404

405 } e lse i f ( sp . getPathCost ( s , d , arc ) <= getRemainingCost ( ) ) {

406 addArc ( 0 , arc ) ;

407 }

408 }

409

410 @Override

411 public I t e r a t o r<Arc> i t e r a t o r ( ) {

412 return a r c s . i t e r a t o r ( ) ;
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413 }

414 }

Listing 6: code/ils/ls/Ellipse.java

,

1 package com . graphhopper . rout ing . i l s . l s ;

2

3 import com . graphhopper . rout ing . i l s . l s . normal . LSI tera tedLoca lSearch ;

4 import com . graphhopper . u t i l . DistanceCalc ;

5 import com . graphhopper . u t i l . Helper ;

6 import com . graphhopper . u t i l . shapes . BBox ;

7 import com . graphhopper . u t i l . shapes . GHPoint ;

8 import com . graphhopper . u t i l . shapes . Shape ;

9 import sun . r e f l e c t . g e n e r i c s . r e f l e c t i v e O b j e c t s . NotImplementedException ;

10

11 /∗∗

12 ∗ C l a s s which r e p r e s e n t s an E l l i p s e on t h e map . Used by t h e {@link L S I t e r a t e d L o c a l S e a r c h} a l g o r i t h m f o r

r e s t r i c t i n g

13 ∗ t h e s e a r c h s p a c e .

14 ∗ <p>

15 ∗ Note : Th i s d o e s not f u l l y implement t h e Shape i n t e r f a c e !

16 ∗ /

17 public c l a s s E l l i p s e implements Shape {

18

19 private s t a t i c DistanceCalc c a l c = Helper . DIST EARTH ;

20

21 private GHPoint focus1 ;

22 private GHPoint focus2 ;

23 private double radius ;

24

25 public E l l i p s e ( GHPoint focus1 , GHPoint focus2 , double radius ) {

26 t h i s . focus1 = focus1 ;

27 t h i s . focus2 = focus2 ;

28 t h i s . radius = radius ;

29 }

30

31 @Override

32 public boolean i n t e r s e c t ( Shape o ) {

33 throw new NotImplementedException ( ) ;

34 }

35

36 @Override

37 public boolean conta ins ( double l a t , double lon ) {

38 return c a l c . c a l c D i s t ( l a t , lon , focus1 . l a t , focus1 . lon ) +

39 c a l c . c a l c D i s t ( l a t , lon , focus2 . l a t , focus2 . lon ) <= radius ;
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40 }

41

42 @Override

43 public boolean conta ins ( Shape s ) {

44 throw new NotImplementedException ( ) ;

45 }

46

47 @Override

48 public BBox getBounds ( ) {

49 throw new NotImplementedException ( ) ;

50 }

51

52 @Override

53 public GHPoint getCenter ( ) {

54 throw new NotImplementedException ( ) ;

55 }

56

57

58 @Override

59 public double c a l c u l a t e A r e a ( ) {

60 throw new NotImplementedException ( ) ;

61 }

62 }

Listing 7: code/ils/ls/normal/ShortestPathCalculator.java

,

1 package com . graphhopper . rout ing . i l s . l s . normal ;

2

3 import com . graphhopper . rout ing . Path ;

4 import com . graphhopper . rout ing . i l s . l s . Arc ;

5 import com . sun . i s t a c k . i n t e r n a l . NotNull ;

6

7 public i n t e r f a c e S h o r t e s t P a t h C a l c u l a t o r {

8

9 /∗∗

10 ∗ Returns t h e s h o r t e s t d i s t a n c e in m e t e r s be tween two nodes o f t h e graph .

11 ∗ /

12 Path s h o r t e s t P a t h ( i n t s , i n t d ) ;

13

14 /∗∗

15 ∗ Returns t h e t o t a l d i s t a n c e in m e t e r s o f t h e pa th s −−> a r c −−> d where ”−−>” i s s h o r t e s t pa th .

16 ∗

17 ∗ @param s S t a r t node ID .

18 ∗ @param d End node ID .

19 ∗ @param a r c Arc .
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20 ∗ @return D i s t a n c e in m e t e r s

21 ∗ /

22 double getPathCost ( i n t s , i n t d , @NotNull Arc arc ) ;

23

24 }

Listing 8: code/ils/ls/normal/LSIteratedLocalSearch.java

,

1 package com . graphhopper . rout ing . i l s . l s . normal ;

2

3 import com . c a r r o t s e a r c h . hppc . IntHashSet ;

4 import com . graphhopper . rout ing . AbstractRoutingAlgorithm ;

5 import com . graphhopper . rout ing . Di jks t raBid i rec t ionCH ;

6 import com . graphhopper . rout ing . Path ;

7 import com . graphhopper . rout ing . RoutingAlgorithm ;

8 import com . graphhopper . rout ing . i l s . B ikePr ior i tyWeight ing ;

9 import com . graphhopper . rout ing . i l s . I l sAlgor i thm ;

10 import com . graphhopper . rout ing . i l s . I t e r a t i o n ;

11 import com . graphhopper . rout ing . i l s . l s . Arc ;

12 import com . graphhopper . rout ing . i l s . l s . E l l i p s e ;

13 import com . graphhopper . rout ing . u t i l . E d g e F i l t e r ;

14 import com . graphhopper . rout ing . u t i l . TraversalMode ;

15 import com . graphhopper . rout ing . weighting . Weighting ;

16 import com . graphhopper . s torage . Graph ;

17 import com . graphhopper . u t i l . ∗ ;

18 import com . graphhopper . u t i l . shapes . GHPoint ;

19 import com . graphhopper . u t i l . shapes . GHPoint3D ;

20 import com . graphhopper . u t i l . shapes . Shape ;

21 import com . sun . i s t a c k . i n t e r n a l . NotNull ;

22 import com . sun . i s t a c k . i n t e r n a l . Nullable ;

23 import org . s l f 4 j . Logger ;

24 import org . s l f 4 j . LoggerFactory ;

25

26 import j ava . u t i l . ArrayLis t ;

27 import j ava . u t i l . L i s t ;

28 import j ava . u t i l . Random ;

29

30 import s t a t i c com . graphhopper . u t i l . Parameters . Routing . ∗ ;

31

32 /∗∗

33 ∗ Routing Algor i thm which impl ements t h e b i k e r o u t e I t e r a t e d L o c a l S e a r c h a l g o r i t h m from t h e f o l l o w i n g p a p e r :

34 ∗ h t t p s : / / d l . acm . org / c i t a t i o n . cfm ? i d =2820835

35 ∗ /

36 public c l a s s LSI tera tedLoca lSearch extends AbstractRoutingAlgorithm implements Shor tes tPa thCalcu la tor ,

I l sAlgor i thm {
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37

38 private f i n a l Logger logger = LoggerFactory . getLogger ( ge tClass ( ) ) ;

39

40 / / C o n s t a n t s p a s s e d in as p a r a m e t e r s

41 private f i n a l double MIN ROAD SCORE ;

42 private f i n a l i n t MIN ROAD LENGTH;

43 private f i n a l double MAX COST;

44 private f i n a l i n t MAX ITERATIONS ;

45 private f i n a l long SEED ;

46

47 private Graph CHGraph ; / / Graph used f o r CH D i j k s t r a s e a r c h

48 private E d g e F i l t e r l e v e l E d g e F i l t e r ; / / Used f o r CH D i j k s t r a s e a r c h

49 private Weighting scoreWeighting ; / / Used f o r s c o r i n g a r c s

50 private i n t s , d ; / / S t a r t and End Node IDs

51 private Random random ;

52 private I t e r a t i o n [ ] i t e r a t i o n s ; / / Keep t r a c k o f s c o r e a t e a c h i t e r a t i o n

53

54 private boolean i s F i n i s h e d = f a l s e ;

55

56 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

57 / / TEST CODE

58 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

59 private f i n a l Mode MODE;

60 private f i n a l double BUDGET PERCENTAGE;

61

62 private enum Mode {

63 NORMAL,

64 FIXED PERCENTAGE BUDGET,

65 INCREMENTAL BUDGET,

66 NORMALIZED SCORES;

67

68 s t a t i c Mode getMode ( i n t value ) {

69 i f ( value >= 0 && value < values ( ) . length ) {

70 return values ( ) [ value ] ;

71 }

72 throw new RuntimeException ("Invalid mode specified!" ) ;

73 }

74 }

75

76 /∗∗

77 ∗ C r e a t e s a new ILS a l g o r i t h m i n s t a n c e .

78 ∗

79 ∗ @param graph Graph t o run a l g o r i t h m on .

80 ∗ @param w e i g h t i n g Weight ing t o c a l c u l a t e c o s t s .

81 ∗ @param l e v e l E d g e F i l t e r Edge f i l t e r f o r CH s h o r t e s t pa th c o m p u t a t i o n

82 ∗ @param params P a r a m e t e r s map .
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83 ∗ /

84 public LSI tera tedLoca lSearch ( Graph graph , Weighting weighting ,

85 E d g e F i l t e r l e v e l E d g e F i l t e r , PMap params ) {

86 super ( graph . getBaseGraph ( ) , weighting , TraversalMode . EDGE BASED 1DIR ) ;

87

88 CHGraph = graph ;

89 t h i s . l e v e l E d g e F i l t e r = l e v e l E d g e F i l t e r ;

90 scoreWeighting = new BikePr ior i tyWeight ing ( f lagEncoder ) ;

91

92 MAX COST = params . getDouble (MAX DIST , DEFAULT MAX DIST) ;

93 MAX ITERATIONS = params . g e t I n t ( Parameters . Routing . MAX ITERATIONS, DEFAULT MAX ITERATIONS) ;

94 MIN ROAD SCORE = params . getDouble ( Parameters . Routing . MIN ROAD SCORE, DEFAULT MIN ROAD SCORE) ;

95 MIN ROAD LENGTH = params . g e t I n t ( Parameters . Routing .MIN ROAD LENGTH, DEFAULT MIN ROAD LENGTH) ;

96 SEED = params . getLong ( Parameters . Routing . SEED , System . currentTimeMil l i s ( ) ) ;

97

98 random = new Random(SEED) ;

99 i t e r a t i o n s = new I t e r a t i o n [MAX ITERATIONS ] ;

100

101 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

102 / / TEST CODE

103 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

104 MODE = Mode . getMode ( params . g e t I n t ( Parameters . Routing .MODE, DEFAULT MODE) ) ;

105 BUDGET PERCENTAGE = params . getDouble ( Parameters . Routing .BUDGET PERCENTAGE,

106 Parameters . Routing .DEFAULT BUDGET PERCENTAGE) ;

107 i f (MODE. equals (Mode .NORMALIZED SCORES) ) {

108 double SCORE CUTOFF = params . getDouble ( Parameters . Routing . SCORE CUTOFF, DEFAULT SCORE CUTOFF) ;

109 scoreWeighting = new NormalizedBikePriorityWeighting ( flagEncoder , SCORE CUTOFF) ;

110 }

111

112 i f ( params . getBool (USE SCALED SCORES , f a l s e ) ) {

113 scoreWeighting = new Sca ledBikePr ior i tyWeight ing ( f lagEncoder ) ;

114 }

115 }

116

117 /∗∗

118 ∗ C a l c u l a t e s a r o u t e be tween t h e s p e c i f i e d node IDs .

119 ∗

120 ∗ @param from S t a r t Node ID .

121 ∗ @param t o End Node ID .

122 ∗ @return Path

123 ∗ /

124 @Override

125 public Path ca lcPath ( i n t from , i n t to ) {

126 checkAlreadyRun ( ) ;

127 s = from ;

128 d = to ;
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129 return runILS ( ) ;

130 }

131

132 /∗∗

133 ∗ Main a l g o r i t h m l o o p

134 ∗ /

135 private Path runILS ( ) {

136 long s t a r t = System . currentTimeMil l i s ( ) ;

137 Route s o l u t i o n ;

138 i f ( s h o r t e s t P a t h ( s , d ) . ge tDis tance ( ) > MAX COST) {

139 s o l u t i o n = Route . newRoute ( this , graph , weighting , scoreWeighting , s , d , MAX COST) ;

140 } e lse {

141 s o l u t i o n = i n i t i a l i z e S o l u t i o n ( ) ;

142 logger . i n f o ("Seed: " + SEED) ;

143 for ( i n t i = 1 ; i <= MAX ITERATIONS ; i ++) {

144 double score = s o l u t i o n . getPath ( ) . getScore ( ) ;

145 logger . debug ("Iteration " + i ) ;

146 Lis t<Arc> arcRemovalPool = s o l u t i o n . getCandidateArcsByIP ( ) ;

147 logger . debug ("Possible arcs to remove from solution: " + arcRemovalPool . s i z e ( ) ) ;

148

149 i n t randomIndex = random . n e x t I n t ( arcRemovalPool . s i z e ( ) ) ;

150 Arc arcToRemove = arcRemovalPool . remove ( randomIndex ) ;

151 Lis t<Arc> inher i tedCas = arcToRemove . getCas ( ) ;

152

153 / / Remaining budge t a f t e r removing ” arcToRemove ” from s o l u t i o n

154 double pathBudget = s o l u t i o n . getRemainingCost ( ) + arcToRemove . c o s t ;

155

156 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

157 / / TEST CODE

158 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

159 i f (MODE. equals (Mode . FIXED PERCENTAGE BUDGET) ) {

160 pathBudget = pathBudget ∗ BUDGET PERCENTAGE;

161 } e lse i f (MODE. equals (Mode .INCREMENTAL BUDGET) ) {

162 double percent = ( ( double ) i / MAX ITERATIONS) ∗ (1 − BUDGET PERCENTAGE) ;

163 pathBudget = ( pathBudget ∗ percent ) + BUDGET PERCENTAGE;

164 }

165

166 Route path = generatePath ( s o l u t i o n . getPrev ( arcToRemove ) , s o l u t i o n . getNext ( arcToRemove ) ,

167 pathBudget , arcToRemove . score , inher i tedCas ) ;

168

169 i f ( ! path . isEmpty ( ) ) {

170 logger . debug ("Found path with with dist " + path . getCost ( ) ) ;

171 i n t index = s o l u t i o n . removeArc ( arcToRemove ) ;

172 s o l u t i o n . inser tRoute ( index , path ) ;

173 for ( Arc arc : s o l u t i o n ) {

174 / / Remaining budge t a f t e r removing ” a r c ” from s o l u t i o n
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175 double newBudget = s o l u t i o n . getRemainingCost ( ) + arc . c o s t ;

176

177 i n t startCAS = s o l u t i o n . getPrev ( arc ) ;

178 i n t endCAS = s o l u t i o n . getNext ( arc ) ;

179

180 i f ( path . conta ins ( arc ) | | arc . adjNode == startCAS | | arc . baseNode == endCAS) {

181 / / Using removed a r c ’ s CAS t o compute nex t CAS ( i n h e r i t )

182 computeCAS ( arc , inheri tedCas , startCAS , endCAS , newBudget ) ;

183 } e lse {

184 double oldBudget = s o l u t i o n . getRemainingCost ( ) + arcToRemove . c o s t ;

185 updateCAS ( arc , inheri tedCas , startCAS , endCAS , newBudget , oldBudget ) ;

186 }

187 }

188 }

189

190 long elapsed = System . currentTimeMil l i s ( ) − s t a r t ;

191 i t e r a t i o n s [ i − 1] = new I t e r a t i o n ( score , elapsed / 1 0 0 0 . 0 ) ;

192 }

193 }

194

195 i s F i n i s h e d = t rue ;

196

197 return s o l u t i o n . getPath ( ) ;

198 }

199

200 /∗∗

201 ∗ C r e a t e s a new Route , adds a f a k e arc , and computes f i r s t CAS .

202 ∗

203 ∗ @return Route .

204 ∗ /

205 private Route i n i t i a l i z e S o l u t i o n ( ) {

206 Route route = Route . newRoute ( this , graph , weighting , scoreWeighting , s , d , MAX COST) ;

207 / / Add f a k e edge t o s t a r t s o l u t i o n

208 Arc arc = new Arc ( Arc . FAKE ARC ID , s , d , MAX COST, 0 , P o i n t L i s t .EMPTY) ;

209 computeCAS ( arc , null , s , d , MAX COST) ;

210 route . addArc ( 0 , arc ) ;

211

212 return route ;

213 }

214

215 /∗∗

216 ∗ Computes t h e C a n d i d a t e Arc S e t f o r t h e s p e c i f i e d s t a r t , end , and c o s t p a r a m e t e r s .

217 ∗

218 ∗ @param a r c Arc t o s e t CAS on .

219 ∗ @param c a s Current CAS . May be n u l l .

220 ∗ @param s S t a r t Node ID .

63



221 ∗ @param d End Node Id .

222 ∗ @param c o s t Cost a l l o w a n c e .

223 ∗ /

224 private void computeCAS ( Arc arc , @Nullable L i s t<Arc> cas , i n t s , i n t d , double c o s t ) {

225 Lis t<Arc> r e s u l t = new ArrayList<>() ;

226

227 GHPoint focus1 = new GHPoint ( nodeAccess . ge tLat i tude ( s ) , nodeAccess . getLongitude ( s ) ) ;

228 GHPoint focus2 = new GHPoint ( nodeAccess . ge tLat i tude ( d ) , nodeAccess . getLongitude ( d ) ) ;

229 E l l i p s e e l l i p s e = new E l l i p s e ( focus1 , focus2 , c o s t ) ;

230

231 / / I f we don ’ t have a CAS y e t

232 / / F e t c h a r c s from t h e graph us ing s p a t i a l i n d i c e s

233 i f ( cas == null ) {

234 / / S i n c e s i s one o f t h e f o c i o f our e l l i p s e , i t w i l l a lways be c o n t a i n e d in i t .

235 / / Use s as t h e node which we s t a r t our s e a r c h

236 cas = getAl lArcs ( e l l i p s e , s ) ;

237 }

238

239 logger . debug ("Starting to compute CAS! num arcs: " + cas . s i z e ( ) + " cost: " + c o s t ) ;

240

241 outer :

242 for ( Arc e : cas ) {

243

244 / / B a s i c r e s t r i c t i o n s on a t t r a c t i v e a r c s

245 i f ( e . score > MIN ROAD SCORE && e . c o s t > MIN ROAD LENGTH) {

246 / / S p a t i a l−b a s e d f e a s i b i l i t y c h e c k i n g

247 for ( GHPoint3D ghPoint3D : e . points ) {

248 i f ( ! e l l i p s e . conta ins ( ghPoint3D . l a t , ghPoint3D . lon ) ) {

249 continue outer ;

250 }

251 }

252

253 / / Check a r c f e a s i b i l i t y

254 i f ( getPathCost ( s , d , e ) <= c o s t ) {

255 c a l c Q u a l i t y R a t i o ( e , s , d ) ;

256 r e s u l t . add ( e ) ;

257 }

258 }

259 }

260

261 logger . debug ("Finished computing CAS! size: " + r e s u l t . s i z e ( ) ) ;

262

263 arc . setCas ( r e s u l t ) ;

264 }

265

266 /∗∗
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267 ∗ F e t c h e s a l l Arcs from t h e graph which a r e c o n t a i n e d i n s i d e o f t h e s p e c i f i e d Shape .

268 ∗

269 ∗ @param s h a p e Shape .

270 ∗ @param s t a r t N o d e Node t o s t a r t s e a r c h from .

271 ∗ @return Arc l i s t .

272 ∗ /

273 private Lis t<Arc> getAl lArcs ( f i n a l E l l i p s e shape , i n t startNode ) {

274 logger . debug ("Fetching arcs from graph!" ) ;

275 f i n a l Lis t<Arc> a r c s = new ArrayList<>() ;

276

277 Brea dthF i r s tS earc h bfs = new Bre adth F i r s t Sear ch ( ) {

278 f i n a l Shape localShape = shape ;

279 f i n a l IntHashSet edgeIds = new IntHashSet ( ) ;

280

281 @Override

282 protected boolean goFurther ( i n t nodeId ) {

283 return localShape . conta ins ( nodeAccess . ge tLa t i tude ( nodeId ) , nodeAccess . getLongitude ( nodeId ) ) ;

284 }

285

286 @Override

287 protected boolean checkAdjacent ( E d g e I t e r a t o r S t a t e edge ) {

288 i f ( localShape . conta ins ( nodeAccess . ge tLat i tude ( edge . getAdjNode ( ) ) , nodeAccess . getLongitude ( edge .

getAdjNode ( ) ) ) ) {

289 i n t edgeId = edge . getEdge ( ) ;

290 i f ( ! edgeIds . conta ins ( edgeId ) ) {

291 a r c s . add ( getArc ( edge ) ) ;

292 edgeIds . add ( edgeId ) ;

293 }

294 return true ;

295 }

296 return f a l s e ;

297 }

298 } ;

299

300

301 bfs . s t a r t ( outEdgeExplorer , startNode ) ;

302

303 logger . debug ("Got all arcs inside of ellipse! num: " + a r c s . s i z e ( ) ) ;

304

305 return a r c s ;

306 }

307

308 /∗∗

309 ∗ Returns an Arc o b j e c t i n s t a n c e from t h e s p e c i f i e d E d g e I t e r a t o r from t h e Graph .

310 ∗

311 ∗ @param e d g e I t e r a t o r Edge
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312 ∗ @return Arc

313 ∗ /

314 private Arc getArc ( E d g e I t e r a t o r S t a t e e d g e I t e r a t o r ) {

315 i n t edge = e d g e I t e r a t o r . getEdge ( ) ;

316 i n t baseNode = e d g e I t e r a t o r . getBaseNode ( ) ;

317 i n t adjNode = e d g e I t e r a t o r . getAdjNode ( ) ;

318 double edgeCost = e d g e I t e r a t o r . ge tDis tance ( ) ;

319

320 double edgeScore = scoreWeighting

321 . calcWeight ( e d g e I t e r a t o r , fa lse , baseNode ) ;

322

323 return new Arc ( edge , baseNode , adjNode , edgeCost , edgeScore , e d g e I t e r a t o r . fetchWayGeometry ( 0 ) ) ;

324 }

325

326 /∗∗

327 ∗ Updates t h e C a n d i d a t e Arc S e t f o r t h e s p e c i f i e d Arc .

328 ∗

329 ∗ @param a r c Arc t o u pda t e .

330 ∗ @param s S t a r t Node Id .

331 ∗ @param d End Node Id .

332 ∗ @param newBudget New a l l o w a b l e budge t .

333 ∗ @param o l d B u d g e t Old a l l o w a b l e budge t .

334 ∗ /

335 private void updateCAS ( @NotNull Arc arc , @NotNull L i s t<Arc> cas , i n t s , i n t d , double newBudget , double

oldBudget ) {

336 / / R e s t r i c t CAS us ing i n h e r i t p r o p e r t y

337 i f ( newBudget < oldBudget ) {

338 Lis t<Arc> newCas = new ArrayList<>() ;

339 for ( Arc e : cas ) {

340 / / Remove any a r c whose pa th i s t o o b i g

341 i f ( getPathCost ( s , d , e ) <= newBudget ) {

342 newCas . add ( e ) ;

343 }

344 }

345 arc . setCas ( newCas ) ;

346 } e lse i f ( newBudget > oldBudget ) {

347 computeCAS ( arc , null , s , d , newBudget ) ;

348 }

349 }

350

351 /∗∗

352 ∗ Computes t h e Q u a l i t y R a t i o f o r t h e s p e c i f i e d Arc .

353 ∗

354 ∗ @param a r c Arc .

355 ∗ @param s S t a r t Node ID .

356 ∗ @param d End Node ID .
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357 ∗ /

358 private void c a l c Q u a l i t y R a t i o ( @NotNull Arc arc , i n t s , i n t d ) {

359 Path sp1 = s h o r t e s t P a t h ( s , arc . baseNode ) ;

360 Path sp2 = s h o r t e s t P a t h ( arc . adjNode , d ) ;

361

362 double value = 0 ;

363

364 Lis t<E d g e I t e r a t o r S t a t e> edges = sp1 . calcEdges ( ) ;

365 edges . addAll ( sp2 . calcEdges ( ) ) ;

366

367 for ( E d g e I t e r a t o r S t a t e edge : edges ) {

368 value += scoreWeighting . calcWeight ( edge , fa lse , edge . getBaseNode ( ) ) ;

369 }

370

371 value += arc . score ;

372 value /= ( sp1 . getDis tance ( ) + arc . c o s t + sp2 . getDis tance ( ) ) ;

373

374 i f ( Double . isNaN ( value ) ) {

375 value = 0 ;

376 }

377

378 arc . q u a l i t y R a t i o = value ;

379 }

380

381 /∗∗

382 ∗ Returns a l i s t o f Arcs from t h e s p e c i f i e d CAS whose Q u a l i t y R a t i o s c o r e s a r e a b o v e t h e a v e r a g e .

383 ∗

384 ∗ @param c a s CAS

385 ∗ @return Arc l i s t .

386 ∗ /

387 private Lis t<Arc> getCandidateArcsByQR ( Lis t<Arc> cas ) {

388 Lis t<Arc> a r c s = new ArrayList<>() ;

389 double avgQR = 0 ;

390 for ( Arc ca : cas ) {

391 avgQR += ca . q u a l i t y R a t i o ;

392 }

393 avgQR /= cas . s i z e ( ) ;

394

395 for ( Arc ca : cas ) {

396 i f ( ca . q u a l i t y R a t i o >= avgQR) {

397 a r c s . add ( ca ) ;

398 }

399 }

400

401 return a r c s ;

402 }
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403

404 /∗∗

405 ∗ G e n e r a t e s a Route from t h e s p e c i f i e d s t a r t and end nodes whose d i s t a n c e i s l e s s than t h e s p e c i f i e d

budge t and

406 ∗ t o t a l s c o r e i s a b o v e t h e s p e c i f i e d .

407 ∗

408 ∗ @param s S t a r t Node Id .

409 ∗ @param d End Node Id .

410 ∗ @param d i s t A l l o w a b l e budge t .

411 ∗ @param m i n P r o f i t Minimum r e q u i r e d s c o r e .

412 ∗ @param c a s CAS

413 ∗ @return Route . May be empty !

414 ∗ /

415 private Route generatePath ( i n t s , i n t d , double dis t , double minProfi t , L i s t<Arc> cas ) {

416 logger . debug ("Generating path! dist: " + d i s t + " minProfit: " + minProf i t + " cas size: " + cas . s i z e ( )

) ;

417 Route route = Route . newRoute ( this , graph , weighting , scoreWeighting , s , d , d i s t ) ;

418

419 Lis t<Arc> a r c s = getCandidateArcsByQR ( cas ) ;

420 while ( ! a r c s . isEmpty ( ) && route . getCost ( ) < d i s t ) {

421 i n t randomIndex = random . n e x t I n t ( a r c s . s i z e ( ) ) ;

422 Arc e = a r c s . remove ( randomIndex ) ;

423 route . insertArcAtMinPathSegment ( e ) ;

424 }

425

426 i f ( route . getScore ( ) > minProf i t ) {

427 return route ;

428 } e lse {

429 return Route . newRoute ( this , graph , weighting , scoreWeighting , s , d , d i s t ) ;

430 }

431

432 }

433

434 @Override

435 public double getPathCost ( i n t s , i n t d , @NotNull Arc arc ) {

436 return s h o r t e s t P a t h ( s , arc . baseNode ) . getDis tance ( ) + arc . c o s t +

437 s h o r t e s t P a t h ( arc . adjNode , d ) . getDis tance ( ) ;

438 }

439

440 @Override

441 public Path s h o r t e s t P a t h ( i n t s , i n t d ) {

442 RoutingAlgorithm search =

443 new Di jks t raBid i rec t ionCH (CHGraph ,

444 weighting , TraversalMode .NODE BASED)

445 . s e t E d g e F i l t e r ( l e v e l E d g e F i l t e r ) ;

446
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447 return search . ca l cPath ( s , d ) ;

448 }

449

450 / / Unused

451 @Override

452 public i n t getVisitedNodes ( ) {

453 return 0 ;

454 }

455

456 @Override

457 protected boolean f i n i s h e d ( ) {

458 return i s F i n i s h e d ;

459 }

460

461 / / Unused

462 @Override

463 protected Path e x t r a c t P a t h ( ) {

464 return null ;

465 }

466

467 / / Used f o r t r a c k i n g p r o g r e s s o f i t e r a t i o n s

468 @Override

469 public I t e r a t i o n [ ] g e t I t e r a t i o n I n f o ( ) {

470 return i t e r a t i o n s ;

471 }

472 }

69


	Introduction
	Motivations
	Related work
	Research Question
	Our Contribution

	Preliminaries
	Modeling Preferability of Cycling Routes
	Iterated Local Search
	VVA Algorithm
	LS Algorithm
	Attractive Arcs
	Candidate Arc Set
	ILS Formulation
	Spatial Pruning Techniques


	ILS Implementation
	OpenStreetMap
	Map Metadata

	GraphHopper
	Contraction Hierarchies

	VVA Implementation
	LS Implementation
	Implementation Observations

	Our LS Variants
	Budget Allowance
	Incremental Budget
	Arc Restrictions
	No Backtracking


	Data
	Map Data
	Data Collection

	Experimental Results
	Iteration Cutoff
	Score Cutoff

	Integer Programming Evaluation
	Integer Programming Definition
	Integer Programming model for the AOP
	Gurobi Implementation

	Conclusion
	Future Work
	Acknowledgements

	Appendices
	LS Algorithm
	Path Generation
	Arc Choice Heuristics

	ILS Implementation Code
	VVA Code
	LS Code


