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Abstract

In Bitcoin, transactions are stored in a timestamped object, or a block. Ideally, the public ledger forms

a singly linked chain of blocks, or a single blockchain, and each user maintains a uniform state of the

blockchain copy. When the blockchain has multiple branches, or forks, the longest branch is the only valid

chain, according to the current protocol, the Nakamoto Consensus. GHOST is an alternative protocol that

instead selects the branch with the most blocks appended to it. GHOST is much faster than Nakamoto

Consensus in transaction processing but produces more forks. Neither protocol protects the system when

selfish miners collude to keep mining on a shorter branch and make it the longest or the heaviest to revert

valid blocks. What we need is a new policy that is as fast as GHOST but is as secure as the Nakamoto

Consensus.

In this paper, we extend GHOST and propose an alternative policy, HIRES, which resolves forks by

choosing the subtree containing the highest transaction fees, or residuals. We hypothesize HIRES is as fast

as GHOST and as secure as the Nakamoto Consensus, as miners choose transactions with high residuals to

maximize their incentives and resilience to reversion. We test the three protocols with extreme and typical

block parameters in Bitcoin network simulator by Arthur Gervais to compare their efficiency and their

security. In the experiment, we conclude that HIRES and GHOST are approximately 30 times faster than

the Nakamoto Consensus, but the latter is the most resilient as it incentivizes the selfish miners the least.
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1 Introduction

Bitcoin is the first successful decentralized electronic cash payment system, developed by Satoshi Naka-

moto in 2008 and deployed in January 2009 [14]. Bitcoin has seen rapid growth over the past few years,

both in value and the number of transactions. As of today, a unit of Bitcoin is worth more than 9000 USD,

and more than 300,000 transactions are being processed daily [3]. Estimated transaction volume exceeds

1B USD, and more than 140 Bitcoin exchanges provide exchange services with alternative cryptocurrencies,

digital assets, and real-world currencies [4]. The press predicts a continual rise of digital currency as more

people distrust the stability of national currencies and government policies [13].

Under the meteoric rise of Bitcoin, decentralization is the core property; unlike a conventional e-cash

scheme that requires a trusted third party to prevent double-spending, an act of spending the same money

twice, and mediate disputes, Bitcoin relies on a peer-to-peer network where each user stores a common

public ledger. Specifically, if a user Alice pays a user Bob, the corresponding transaction is broadcast to

every user in the system. Each user, or node, decides whether the transaction satisfies a set of validation

rules [15]. If the transaction is confirmed valid, the nodes place it in a queue, where all valid transactions

are waiting to be added to the public ledger; invalid transactions are rejected.

Bitcoin achieves decentralization with its incentive mechanism. It rewards the nodes, called miners, who

collect the pending transactions and put them in an object called block. Miners solve a complex computa-

tional puzzle, or proof of work, to make a valid block and connect it to a previously created block, or its

parent. Miners usually share their computation power in a mining pool and jointly work to generate a block

faster. Once they find the solution, the block is appended to its parent in the public ledger, where all the

generated blocks are chained in chronological order since the very first block (the genesis block). Sometimes

multiple blocks are made concurrently, and thus the public ledger is not necessarily a single line of blocks,

called a blockchain, but forms a block tree with several branches.

Bitcoin nodes agree on a blockchain policy called Nakamoto Consensus, named after the creator of Bit-

coin; the longest branch is the only valid transaction history. Thus, miners who add blocks to the longest

chain are rewarded with newly minted bitcoins and the transaction fees from the blocks. Blocks in shorter

branches, or stale blocks, are ignored. An example diagram is provided to more aptly describe a single

4



Figure 1: A block tree generated from the genesis (green) block.

blockchain. Figure 1 describes a block tree where the chain of filled blocks is the only valid chain [11]. The

state of having multiple branches is said to have blockchain forking.

1.1 Blockchain Forking

Forking occurs when nodes are accepting different blocks based on their local copies of the ledger.

The inconsistency is closely associated with nodes’ activities over Bitcoin network. If multiple blocks of a

single parent, or its children are generated, some nodes receive one of them first and discard the other while

others do the opposite; miners do not agree on a single new parent for the next block to be mined, forming

multiple branches with longer forks. In Figure 1, some nodes accept the second filled block and discard the

first slashed block while others do the opposite; the temporary inconsistency is resolved by mining on the

filled block; the fourth filled block and the second slashed block are in a fork, and it becomes longer as the

next set of blocks are appended to different branches; miners agree on appending to the fifth filled block,

and the nodes accept different blocks until the last filled block is mined.

We provide another example to demonstrate how the network nodes accept different blocks. Figure

2 describes a peer-to-peer network that emulates Bitcoin network [6]. A, B, C, and D refer to Alice, Bob,

Charlie, and David, and they represent the nodes we mention in the diagram. Other nodes are depicted as

filled circles, and an edge connecting two nodes signifies communication between them. Alice and Charlie
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Figure 2: A peer-to-peer network.

are miners from different mining pools, and each has a newly generated block to broadcast. Bob and David

are the most distant nodes waiting for the block.

Alice and Charlie have two valid blocks, and each contains the information of the miner, the unique ID

of its parent, and a collection of transactions. Alice and Charlie send their blocks to their closest nodes, or

their peers, via the edges that connect them. David receives Charlie’s block sooner than Alice’s block, so

he accepts Charlie’s block and discards Alice’s block. Bob receives from Alice sooner than Charlie because

Bob is closer to Alice. Likewise, Bob accepts Alice’s Block and ignores Charlie’s block. Now David and Bob

have different local copies of the blockchain. If Charlie and Alice do not agree on selecting a new parent and

append to their own previous blocks, the fork becomes longer as Bob and David validate the new blocks

against their public ledger.

In reality, the Bitcoin network is much bigger and tangled; many nodes may have different local replicas

of the blockchain, and a single forking may develop into multiple branches. Blockchain forking is a serious

security threat as self-interested miners collude and beat the longest chain to revert valid transactions. In

Figure 1, the attackers can add two consecutive blocks to the last slashed block and make the chain the

longest, reverting valid transactions from the last filled block; the filled block becomes a stale block. If the

attackers have enough computational power over the network, they can start catching up from few blocks

behind and supersede the main chain, making work of honest miners wasted and receiving incentives dis-
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honestly.

1.2 Nakamoto Consensus vs. GHOST

In practice, Nakamoto Consensus naively resolves forks by adjusting the hardness of proof of work;

miners typically generate a 1MB block every 10 minutes. Block generation time is much slower than prop-

agation time, so the nodes are not likely to receive two consecutive blocks, and the probability of forking

decreases. In theory, the system can endure attacks based on forking, such as the attackers colluding to mine

from few blocks behind to make their branch the longest and revert transactions in the main chain [14], or

selfish mining.

In 2013, Yonatan Sompolinsky and Aviv Zohar proposed an alternative consensus protocol called the

GHOST, which resolves forks by selecting the heaviest leading block at each fork rather than the longest

chain [17]. In other words, a block that has more blocks appended becomes the block in the main chain. The

authors hypothesize stale blocks can be included in the main chain to accelerate its growth. They propose

significantly decreasing the size of a block and the block creation time by making proof of work easier to

accelerate transaction processing: make a 320KB block every 1 second.

Yet, the policy based on GHOST generates blocks too fast that its forking rate is much higher than that

of the current Bitcoin policy. For example, in Ethereum, another distributed platform based on blockchain

technology that modifies GHOST to make a 1.5KB block every 10 to 20 seconds, 6.8% of blocks become stale

blocks among 4000 nodes, whereas 0.41% exists in Bitcoin among 6000 nodes [10]. What we need is a policy

that generates blocks as fast as GHOST and is resilient to attacks based on forking.

1.3 Research Question

Our research question delves into the following problem: Is there a policy that is as fast as the policy

based on GHOST and as secure as the current Bitcoin policy based on Nakamoto Consensus?
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1.4 Our Contribution

We use Arthur Gervais’s Bitcoin network simulator [1] to compare two policies based on GHOST and

Nakamoto Consensus. We conduct experiments under honest mining and selfish mining, each with ex-

treme and typical block parameters, where the total statistics of mining activity and information propaga-

tion are returned for each simulation. For honest mining tests, we focus on the number of total blocks in

the main chain, the number of stale blocks, and the average block propagation to compare the efficiency of

each policy on the growth of the main chain. For selfish mining tests, we focus on the number of selfishly

mined blocks and the selfish miner’s contribution to the growth of the main chain to compare the security

of each policy.

Our main contribution is to extend GHOST and to propose a new blockchain policy based on our anal-

ysis of the preliminary result. We propose HIRES that selects a block leading to the highest total value of

transaction fees at each fork to make transaction subversion more difficult. Lastly, we evaluate three poli-

cies using the same approach and discover the impact of the forking rate on the efficiency and the security

of Bitcoin blockchain.

2 Organization

The paper is organized as follows. In Section 3, we elaborate technical details of Bitcoin and introduce

two Bitcoin protocols, Nakamoto Consensus and GHOST. In Section 4, we overview the related work on

the different analysis of security threat on Bitcoin. In Section 5, we introduce Arthur Gervais’s Bitcoin net-

work simulator and the preliminary simulation result of Nakamoto Consensus and GHOST to discuss our

method for the new protocol, HIRES. In Section 6, we evaluate the simulation results of Nakamoto Con-

sensus, GHOST, and HIRES. In Section 7, we draw our conclusion based on the result. Section 8 discusses

future work, and Section 9 is the acknowledgment.
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3 The Bitcoin Protocol

This section explains technical details of the Bitcoin protocol to offer a better understanding of the re-

search topic and our work. Section 3.1 elaborates how Bitcoin transactions are processed and validated.

Section 3.2 describes the implementation of blocks and mining process. In Section 3.3, we focus on security

threats and attack triggered by blockchain forking. Section 3.4 introduces Nakamoto Consensus, and Sec-

tion 3.5 describes an alternative protocol, GHOST. Finally, in Section 3.5, we compare Nakamoto Consensus

and GHOST in terms of selecting the next block to be included in the main chain.

3.1 Transactions

We give an example addressing Alice, Bob, and Charlie to describe a public key and a private key in

Bitcoin. We assume Alice and Bob are regular nodes, and Charlie is an attacker. Each node has a private

key, a 256-bit number, and a public key, a 512-bit number1. Alice stores her private key in a secure place

and keeps it secret. Her private key tells that she is a valid user to spend her coin [2]. If Charlie steals her

private key, then he has a permission to spend her coin. However, Charlie gains nothing by stealing Bob’s

public key as it signifies Bob’s Bitcoin address.

We address Alice, Bob, and David to explain the input and the output of a Bitcoin transaction. Alice

has 4 BTC2 and wants to send all to Bob. Unless Alice is Satoshi Nakamoto, the creator of Bitcoin who is

unidentified, Alice must have received 4 BTC or more from some node, David, during her previous trans-

actions. When Bob receives the money from Alice, then Bob’s money is actually from Alice who has made

transactions with David to receive the money. Thus, the output of the previous transaction becomes the

input of current transaction, and the output of current transaction is an instruction for sending money to

the designated recipient.

We use Alice as a sender, Bob as a receiver, and Charlie as an attacker to describe how to make a valid

transaction. Alice uses her private key to digitally sign a hash of the previous transaction and Bob’s public

1Compressed public key is 257 bits, but this paper rather focuses on the use of public and private keys.
2a unit of Bitcoin
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key [14]. Bob proves the ownership with his public key; If Charlie modifies the transaction content, then

Bob knows because he cannot verify the digital signature of Alice with his public key. In reality, Alice has

to leave some portion of her money as transaction fees, or residuals, when making the transaction to Bob,

and Bob receives less than 4 BTC. The output of a transaction cannot exceed the input.

We use Alice as a sender to describe how transactions are validated. Alice can make multiple transac-

tions at a time. Most importantly, she must send the rest of the output back to herself. If she decides to

send only 3 BTC out of 4 BTC, then she has to send the rest back to herself. Once the transaction is vali-

dated, it is broadcast to the network nodes, just as in Figure 2. Each node validates the transaction with

a set of validation rules; each transaction is a script that executes functions that check whether the sender

uses a valid private signature to refer to the previous transaction and the public key of a recipient; it checks

whether transaction fees are included; the last function checks whether the public key is the valid address

of the recipient. Lastly, the network nodes check their copies of blockchain to prevent accepting two con-

current transactions using the same coin. After the transaction passes the rules, it is pushed to a memory

pool, where all unconfirmed transactions are randomly organized to be processed. Finally, when the nodes

confirm that the transaction is in the pool, they no longer broadcast it [15].

3.2 Blocks and Mining

A block, in the context of Bitcoin, is a timestamped file that permanently records transaction data per-

taining to the network nodes [2]. To generate a valid block, miners use Bitcoin mining software to concate-

nate an arbitrary one-off number called nonce, the hash of its parent, and the list of transactions included

in the block and calculate the hash of the entire thing such that the output falls in a target value, a 256 bit

number starting with a certain number of zeros; the hash of a newly generated block must have enough

leading 0’s such that ≤ target. For instance, if the target value has 10 leading 0’s with the remainder of

random values, any block hash less than or equal to the target is considered valid.

In practice, Bitcoin adjusts the hash target every 2016 blocks [2] to maintain the average mining time

of 10 minutes. The hardness of proof of work, or its difficulty, is the ratio of the maximum target, having
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32 leading 0’s and the remainder of 1’s, divided by the current target. As of today, the entire computation

power is approximately 9.584 ExaHash or 9.584∗109 GH/s, and the current difficulty is 3.3∗1012 [3]. In other

words, miners have to increment the nonce and calculate SHA-256, a hashing algorithm, about 3.3 ∗ 1012

times as many hashes to find the solution. The major mining pools generate blocks even faster, which im-

plies the amount and the value of computer resources to participate in mining are tremendous [12].

Once they find the valid nonce value, the block is generated and broadcast to the public. To avoid trans-

mitting blocks to the nodes that have already received the data from other nodes, an inv message is sent to

announce the availability of the transactions and blocks that have been validated. When a node receives

an inv message from its peer or another node, it requests the transmission of the corresponding data by

sending a getdata message. Then the announcer of the inv message sends the data. During information

propagation, the propagation delay occurs because the size of the block message is much larger than that

of inv and getdata messages. The delay costs for small blocks are greater because even the small message is

announced via an inv message and retrieved via a getdata message [8].

When a node receives the block, he tests its validity. A valid block must have its hash starting with

enough 0’s that falls in a target value; the block must only have unconfirmed transactions, and having

identical transactions with any previous blocks in the block tree disqualifies it being permanently added to

blockchain; it must have the correct hash of its parent that is being appended to, or otherwise it becomes

an orphan block, a block that has no parent. An orphan block may become the genesis block to form another

chain, but the likelihood of it superseding the main chain is very low as miners keep adding to the main

chain to receive the block reward. After validation, each node adds the block to her copy of blockchain and

repeats the announcement procedure until the most distant nodes receive the block.

The Bitcoin system rewards the miners by minting new Bitcoins whenever they find the solution to

proof of work. The system controls the circulation of coins by making the mining process more difficult as

the rate of block creation increases and the average mining time decreases [7]. By regulating the difficulty

of the mining process, the rate of block creation approaches its standard rate, and the average mining time

increases. As a whole, a new block is generated every 10 minutes, and minting will reach the capped total

of 21 million BTC by the year 2140.
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3.3 Blockchain Forking and Attack

Ideally, the blockchain should resemble a singly linked list where an incoming block points to its pre-

vious block or its parent. However, many mining pools attempt to generate blocks faster than their coun-

terparts, and sometimes two or more blocks point to the same parent. The network nodes receive different

blocks at a different time and have a different state of blockchain copies. In extreme case, the inconsistency

results in multiple branches and forms a tree of blocks, degrading Bitcoin’s credibility [17].

In practice, the network nodes select whichever they receive first. Bitcoin assures that the average time

it takes to broadcast a newly generated block to the network nodes is negligible to the expected time be-

tween consecutive block generation [14], and any kind of temporary inconsistency eventually synchronizes

to share a uniform copy of blockchain [8]. Nonetheless, scholars argue whether blocks would need to be-

come larger as Bitcoin would process more transactions, and longer propagation delay would increase the

likelihood of blockchain forking [17].

The less problematic type of attack based on forks is double spending. We recall Alice, Bob, and Charlie

in Section 2.1. Suppose Charlie sends Alice 1 BTC, but later he sends the same coin to Bob. Some miners

create a block includes C-A3 transaction, while others create a block includes C-B4 transaction. The com-

mon heuristic to minimize the vulnerability of the attack is to wait for six blocks to be added after receiving

or making a payment to verify their transaction has been accepted. Alice and Bob wait for six blocks to be

appended on top of their transactions; one of them receives 1 BTC from Charlie as the network nodes notice

the inconsistency among their copies and agree on one transaction.

The most renown attack based on forks is 51% attack; malicious miners occupy more than half of the

computation power and jointly produce a block to dishonestly make a profit. Unlike honest miners who

broadcast blocks upon creation, the attackers select a block in the main chain as a starting block and mine

in their private chain. They release the private chain when it becomes longer than the honest chain ap-

pended to the attack source. The type of mining is called selfish mining, and if > 50%5 of the mining power

is engaged in selfish mining, reverting valid blocks appended on the source block becomes possible. Thus,

3Charlie to Alice
4Charlie to Bob
5Ittay Eyal et al. proposes 33%, but we use 50% in this paper.
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the common heuristic of waiting for six more blocks does not protect the system. To that extent, Satoshi

Nakamoto assures the success rate to reverse a chain of block drops exponentially as the number of blocks

appended to the target block increases [14]. However, blocks in forks, or stale blocks, may distribute honest

computation power as honest miners add on different branches in the main chain while the attackers only

work on adding to their private chain.

3.4 Nakamoto Consensus

Satoshi Nakamoto, the creator of Bitcoin, proposes Nakamoto Consensus [14] to resolve forking and

thwart reversion of valid transactions. Nakamoto Consensus handles forks by selecting whichever is the

longest as the main chain; shorter branches exist in the ledger, but miners choose the longest chain for

mining to get incentives. When two branches are the same length, whichever has the next block appended

becomes longer, and it becomes the main chain. The consensus reflects Bitcoin is secure as long as the at-

tacker nodes do not exceed the half of the mining population.

In the Bitcoin white paper, Satoshi Nakamoto makes a scenario for selfish mining where the sender is an

attacker who attempts to revert the transaction with an honest node. The author uses Poisson distribution

to retrieve the probability of the selfish miner to start mining from n blocks behind and making his private

chain longer than the existing main chain when the selfish miner occupies < 50% of the entire computa-

tional power over the network. The author concludes the value drops exponentially as n increases; when

the selfish miner has 10% of the computational power, the probability of catching up after 5 blocks added

to the target block is ≤ 0.1%; when the computational power is 45%, the probability is ≤ 0.1% for n = 340.

3.5 GHOST

Yonatan Sompolinsky and Aviv Zohar [17] predict the rapid adoption of the digital currency and the

necessity of accelerating Bitcoin’s transaction processing. They point out two design flaws in Bitcoin

blockchain policy, the propagation delay of blocks and the waiting time for transaction confirmation, are
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restricting the rate of transaction processing significantly lower than the network bandwidth for streaming

transactions. While Nakamoto Consensus ensures its secureness with its heuristic of waiting for six blocks

to be added in the main chain, the authors argue its confirmation algorithm is not efficient.

The authors study the previous work of Christian Decker and Roger Wattenhofer [8] on the propagation

delay in a large sample of the network nodes from the height of 180,000 and 190,000 of the public ledger;

Christian Decker and Roger Wattenhofer observe the median delay time of 6.5 seconds and the mean delay

time of 12.6 seconds until a node receives a block; 95% of the nodes receive a block after 40 seconds. Using

the same height range, they observe the fork rate of 1.69%.

Based on the analysis, Yonatan Sompolinsky and Aviv Zohar obtain the upper and the lower thresholds

of the number of processable transactions without jeopardizing the security of Bitcoin. It is shown that half

of the network nodes receive a block and update their copies of the public ledger instantly since the initial

announcement, while the other half needs to wait a certain amount of time; the average time it takes to

deliver the data to the first half of the nodes equals to 1.80 + 0.66 · block size.

With the given formula, the authors propose the GHOST protocol, which provides a new consensus for

parent selection. Particularly, GHOST allows blocks in forks or stale blocks, and subchains to contribute

to the main chain. The protocol updates the next block to be included in the main chain by choosing the

block that has the most blocks appended on top of it, or the heaviest subtree, at each fork. The protocol

repeats until blocks in forks are no longer present. The following algorithm is directly extracted from the

white paper to describe the mechanism of GHOST. We assume the input T is the block tree and block B is

the parent of the first fork in T.

Algorithm 1. GHOST [17] Input: T

1 Set B as the genesis block

2 while True

3 if B has no children

4 return B

5 Update B with its child of the heaviest subtree
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In Algorithm 1, we can observe GHOST first sets B as the genesis block and checks whether it has any

children. If not, B is the only block in T , so GHOST returns B as the heaviest leading block. Otherwise,

it updates B with its child that has the most blocks appended to, or the root of the heaviest subtree, and

iterates until B has no children. It returns B if it is at the lowest level in T .

Finally, the authors integrate GHOST and the propagation delay to propose the lower and the upper

bounds of the maximum transaction processing rate that Bitcoin can handle securely. For an optimal result,

they implement lighter block that only stores transaction hashes instead of the data, by lowering the diffi-

culty level of proof of work. They significantly decrease the size of a block and the block creation rate to

accelerate transaction processing for future extensions of the model. As a result, Bitcoin can decrease the

size of a block from its maximum at 1MB to 320KB and the generation interval from 10 minutes to 1 second.

3.6 Nakamoto Consensus vs. GHOST

To offer a better understanding of the selection process of Nakamoto Consensus and GHOST, the fol-

lowing example is demonstrated. Figure 3 shows a block tree diagram and how the two protocols differ in

selecting the main chain.

In Figure 3, Nakamoto Consensus selects the chain that ends with block E, or the subtree rooted at A,

because it is the longest chain it sees. It concludes with 7 stale blocks, the ones that are not included in the

subtree rooted at A; the number of stale blocks is 7.

GHOST detects a fork between A and X and selects whichever that has the most blocks appended to,

or the heaviest subtree. X has 6 blocks appended or the subtree rooted at X has weight 7. A has 4 blocks

appended, or the subtree rooted at A has weight 5. Thus, X exceeds A in weight. GHOST adds X in the

main chain, and the subtree rooted at A is no longer considered during the next selection process. The

protocol repeats the same procedure for Y, T, and S that point to X. Because T has the heaviest subtree, T

is added to X in the main chain. GHOST repeats the selection process for U and V. The protocol concludes

with 8 stale blocks, the ones that are not included in the heaviest subtree rooted at X.

In the example, we can observe neither protocol removes the threat of selfish mining, as attackers can
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Figure 3: How the main chain is selected when multiple chains exist.

start mining on the stale block Z, V, and S in Nakamoto Consensus and the stale block E, Z, and S in GHOST

for the easiest scenario. Recalling the result of Satoshi Nakamoto’s experiment in Section 3.4, if the selfish

miners occupy > 50% of the computational power, the probability of catching up from few blocks behind

is not negligible.

4 Related Work

Ittay Eyal and Emin Gün Sirer [9] argue that our assumption on selfish mining based on %51 attack is

not correct. Rather, they propose an alternative idea, a %33 attack, based on the proportion of the revenue

and waste of computational resources for honest mining and selfish mining. They hypothesize the impact

on the security of the Bitcoin system when the selfish miners collude and occupy ≥ 1
3 of the computational

power over the network; the selfish miners earn more money in proportion to their pool size whereas honest

miners waste more computational resources. Thus, the likelihood of honest miners to join the selfish mining

pool is high.
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5 Method

We continue the original analysis of GHOST and propose a new Bitcoin blockchain policy. We propose a

new parent selection policy, HIRES or Highest Residual Selection, which makes nodes pick a block that has

the highest residual at each fork. We test the policy with Arthur Gervais’s Bitcoin network simulator [1].

We compare HIRES, GHOST, and Nakamoto Consensus under typical and selfish mining with different

block parameters to optimize the efficiency and the security of Bitcoin blockchain.

Section 5.1 is divided into two parts; the first part introduces the work by Arthur Gervais et al. [10]

to build the Bitcoin Network Simulator; the second part elaborates what the simulator is capable of [1].

Section 5.2 analyzes the preliminary simulation result of Nakamoto Consensus and GHOST under typical

and extreme parameters. Section 5.3 is divided into four parts; in the first part, we describe our intuition

on HIRES based on the analysis of the previous simulation result; the second part elaborates the algorithm

of HIRES; the third part describes how we collect data for our experiments; the last part discusses how we

modify the source code of the simulator and the challenges we confront.

5.1 Bitcoin Network Simulator

In Section 5.1.1, we introduce the work of Arthur Gervais et al. on building the Bitcoin Network Simu-

lator and testing the efficiency and the security of Bitcoin blockchain using different block parameters. In

Section 5.1.2, we overview the technical details of the simulator and its capability.

5.1.1 Research by Arthur Gervais et al.

Arthur Gervais et al. [10] test the correlation between the efficiency and the security of blockchains

based on proof of work. They analyze four cryptocurrencies, Bitcoin, LiteCoin, DogeCoin, and to test how

network parameters and real-world constraints affect the blockchain performance and security. They col-

lect the data of each electronic payment platform from May 2015 to November 2015, specifically block size,

block generation interval, the number of network nodes, and forking rate [3]. They notice Bitcoin’s forking
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rate, or stale block rate, transcends that of other cryptocurrencies and analyze the impact of Bitcoin’s block

size and block generation time on the security of Bitcoin blockchain.

For its security component, they extend Markov Decision Process [16] where malicious mining activi-

ties are determined pseudorandomly to find an optimal strategy to perform double-spending and selfish

mining. They follow an alternative proposal by Ittay Eyal and Emin Gun Sirer [9] on attacks to initialize

the adversarial computation power to 33%, rather than 51% analyzed by Satoshi Nakamoto.

Based on the analysis, the authors build a Bitcoin network simulator that models real-world mining ac-

tivities and information propagation between the network nodes. The authors point out the simulator does

not model transaction propagations between the nodes as their experiment can be done with a higher level

of abstraction. The simulator models 16 miners, representing 16 major mining pools of different computing

power in the Bitcoin network, who perform mining activities and send blocks to nodes. The nodes, rep-

resenting the Bitcoin network nodes, receive blocks and add to their copies of the blockchain. The default

mode of the simulator takes the Bitcoin data and returns the statistics of each experiment, including the rate

of stale blocks, the total number of blocks in each node’s blockchain copy, and block propagation time. The

selfish mining mode initializes 1 miner of 33 % of mining power and distributes the rest to 15 miners; the

result displays the statistics of each selfish mining, including the data in the default mode plus the profit of

selfish mining.

The authors run simulations to retrieve the rate blocks and the profit of adversarial mining when dif-

ferent block generation intervals and block sizes are given; 10000 consecutive blocks are mined in various

ranges, from 25 minutes to 0.5 seconds, and their block sizes differ from 8 MB to 0.1 MB. They conclude

block size and block generation time are inversely proportional; the rate of stale blocks increases exponen-

tially as block size increases, while slower block generation interval decreases the rate; the profit of selfish

mining increases as block generation interval decreases, but selfish miners are rewarded more when the

block size is bigger.
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5.1.2 Technical Details and Capability

As briefly mentioned in the first part, Arthur Gervais’s Bitcoin Network Simulator [1] is a single-

processor model with 16 threads that emulates mining activities of 16 major mining pools. Miners extend

network nodes’ activities during simulation, and thus miners do as much as the network nodes in prop-

agating and validating blocks. A selfish miner can make an extra decision to mine a block, skip block

propagation until his chain becomes the longest, and release it.

Each simulation takes block parameter inputs to start. If the inputs such as the size of a block, the num-

ber of nodes, or the block generation time are not given, the simulation begins with its default input of

100 blocks and 60 nodes. Upon its start, the simulator initializes a global blockchain that stores the genesis

block, and each miner with different computational power performs the first mining activity. Because the

simulator does not model transactions, mining a block is much simpler than what is done in reality. Each

miner thread includes the height of his block, his ID, the miner ID of its parent, time of creation, time of

receival, and his IP address; the miner tries to add to the current highest block in the main chain, and time

of receival is later modified when other nodes receive the block. If the block size is not specified, the size of

each block is drawn from by a probability distribution function based on block size intervals and weights,

which reflects the real block sizes from May 2015 to November 20156 [10]. If block generation interval is not

specified, the next block generation time is also decided accordingly to the size of the block for an optimal

simulation result. Therefore, specifying block parameter inputs is very important to reflect impacts of the

parameters on simulation results.

Upon its creation, each miner sends the block to its peers or the nodes whose IP addresses are connected

with him. As explained in Section 3, the nodes exchange a lot of messages to check the availability of the

block and announce it. We use the following example to describe communication between nodes during a

simulation. In Figure 4, we visualize a network topology that represents information exchange between 300

nodes. Dots refer to nodes, and edges between dots represent information exchange between the nodes.

We see miners have more edges going out and thus are darker as they initially broadcast to their peers. The

nodes who receive the block repeat broadcasting until the most distant nodes receive the block. The topol-

6The data do not reflect block sizes as of today.
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Figure 4: Information propagation between the network nodes during simulation.

ogy does not vary on different information propagation mechanisms, block sizes, the number of blocks, or

block generation intervals. Rather, it reflects how miners and nodes behave during simulation.

The simulation runs until the last block of the targeted number of blocks is mined. The result of each ex-

periment displays the statistics of the rate of stale blocks, the longest fork size, block propagation time, and

blockchain copies of nodes. To thoroughly understand different block propagation delays among the nodes,

consider the following example. In Figure 5, we visualize a cumulative distribution of block propagation

time when passing typical block parameters. We can observe more than 80% of the nodes, or approximately

240 nodes, receive a block less than 10 seconds when the number of nodes is fixed to 300.
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Figure 5: The cumulative distribution of block propagation time.

5.2 Preliminary Experiment: Nakamoto Consensus vs. GHOST

We conduct experiments on Nakamoto Consensus and GHOST using the simulator to discover any

improvements to make. The main purpose of the simulation is to give a better understanding of why we

modify the simulator and propose the alternative policy, HIRES.

For an optimal result, we remove duplicate inv message exchange for same blocks by making its time-

out as long as the time it takes to run the simulation; the modification makes the nodes propagate more

blocks in a fixed amount of time. The following table is presented to describe the block parameters for each

protocol under honest mining and selfish mining. In Table 1, Bitcoin typically generates a 1MB block every

10 minutes [3]; Ethereum modifies GHOST to generate a 1.5KB block every 10 to 20 seconds [5]. For the

extreme block parameters, we make miners to generate a 1MB block every 6 seconds for both protocols.

In honest mining test, we follow the distribution mechanism of the computational power of the source

code. For each protocol, we pass each block parameter described in Table 1 along with 100 blocks and

500 nodes. Each experiment is iterated 100 times. We provide a table that describes the result of each
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Typical Extreme
Block Size Block Generation Interval Block Size Block Generation Interval

NAKAMOTO 1 MB 10 Min 1MB 6 sec
GHOST 1.5 KB 10 - 20 sec 1MB 6 sec

Table 1: Block parameter inputs for honest mining tests and selfish mining tests.

Typical Extreme
# Total Blocks Stale Block (%) Delay (s) # Total Blocks Stale Block (%) Delay (s)

NAKAMOTO 94.97 1.93 23.21 57.51 68.05 93.82
GHOST 99.41 4.42 0.82 57.12 67.34 91.77

Table 2: Honest Mining Test Result 1.

experiment. In Table 2, we define # Total Blocks as the number of total blocks in the main chain and Stale

Block (%) as the percentage of stale blocks in the main chain; the mean block propagation time is represented

as Delay (s).

In selfish mining test, we follow the analysis on 51% attack [14] and assigns the selfish miner 51% of

the entire computation power. For each protocol, we pass each block parameter in Table 1 along with 100

blocks; the source code does not model nodes’ activities but rather focuses on the behavior of the selfish

miner. Each experiment is iterated 100 times as well. The following table is used to describe the result of

each experiment. In Table 3, we define # Total Blocks as the number of total blocks in the main chain and

Stale Block (%) as the percentage of stale blocks in the main chain. We call the number of blocks mined by

the selfish miner # Selfish Blocks and # Selfish Income the number of # Selfish Blocks added to the main chain.

Lastly, Selfish Profit is calculated as follows:

# Selfish Income - # Selfish Blocks
# Selfish Blocks

× 100.

In Table 2, the simulation result of passing the extreme block parameters shows that both protocols have

almost identical data. The network nodes following Nakamoto Consensus propagates 2 seconds slower

than the ones following GHOST, but they slightly have more blocks in their local copies of the blockchain.

We see clear differences in propagation delay from the simulation result of passing the typical block pa-

rameters; the network nodes under GHOST generates about 4 more blocks and propagates almost 30 times
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Typical
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 95.74 43.09 48.28 27.12 -45.29
GHOST 92.33 41.61 49.07 35.74 -29.76

Extreme
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 97.96 43.67 49.52 34.83 -32.16
GHOST 89.51 40.29 50.17 41.85 -18.07

Table 3: Selfish Mining Test Result 1.

faster than Nakamoto Consensus. In this experiment, we conclude that the extreme block parameters are

not optimal to show the efficiency of the protocols, but the typical parameters clearly demonstrate that the

blockchain grows faster under GHOST than Nakamoto Consensus.

Table 3 supports our hypothesis that the blockchain with forking due to stale blocks is vulnerable to

selfish mining when the selfish miners occupy more than half of the computational power. In the extreme

case, the nodes following Nakamoto Consensus make 44% of the blocks in the main chain stale blocks,

and the ones under GHOST let 40% of the blocks become stale blocks. However, Nakamoto Consensus is

more resilient or incentivizes the attacker less than GHOST does by 14%; the attacker following Nakamoto

Consensus mine about 50 blocks and adds 33% of them to the main chain while he adds 42% of them under

GHOST. When passing the typical block parameters, the nodes adopting Nakamoto Consensus produce

43% of stale blocks, whereas the nodes following GHOST has 42% of stale block rate. In this experiment,

we conclude Nakamoto Consensus is more resilient than GHOST as the rate of selfish blocks included in

the main chain is 10% less than that of GHOST. This result also supports the analysis of Arthur Gervais et

al. that block generation interval and block size is inversely proportional.

We have the simulation results that show both protocols do not satisfy the fast growth and the secure-

ness of Bitcoin blockchain. Therefore, we hypothesize a new policy and propose modifying the simulator

to test its validity.
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5.3 HIRES

We propose our parent selection policy HIRES based on the analysis of the previous simulation result.

HIRES extends GHOST in terms of picking a parent that is the root of the most expensive subtree, or having

the highest residual value, at each fork. We discuss our intuition, algorithm, data collection, and its imple-

mentation.

5.3.1 Intuition

In the preliminary simulation result, we can observe GHOST is faster but less secure than Nakamoto

Consensus. Thus, the objective of HIRES is to maintain or supersede the speed of GHOST and make it at

least as resilient as or more secure than Nakamoto Consensus. We recall that miners are rewarded with

newly minted coins and residuals from their block after they add it to the main chain. Our intuition is that

typical miners prefer to collect pending transactions of higher residuals to generate a block with the highest

residual value to maximize their block reward. If the policy is to add the block of the highest value of resid-

uals at each fork, we hypothesize miners try their best to maximize their profits and resilience to reversion.

To that extent, because the number of daily confirmed transactions are definite, once the honest miners

collect the transactions, the attackers only have remaining transactions of lower residuals to collect. We

suspect this behavior makes the likelihood of maintaining the honest chain higher Nakamoto Consensus

because not only heavier subtrees contain higher residuals but also the attackers have fewer options. We

also expect HIRES is as fast as GHOST because we assume HIRES use the same typical block parameters as

GHOST.

5.3.2 Algorithm

Our algorithm of HIRES extends that of GHOST and goes five level down. To more aptly describe the

selection process, we provide the diagram. Algorithm 2 describes how HIRES selects a new parent.
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Algorithm 2. HIRES

1 Set the global blockchain blockchain

2 Set the initial height height to 0

3 Set the genesis block B of blockchain

4 if blockchain.length == 1

5 return B

6 if blockchain.length < 6

7 height = blockchain.length

8 else

9 height = 5

10 if blockchain.(blockchain.length− height) is null or > 1

11 while blockchain.(blockchain.length− height) is null or > 1

12 height = height− 1

13 if height == 0

14 return B

15 Set B to block at blockchain.(blockchain.length− height)

16 while True

17 if B has no children

18 return B

19 Update B with its child in the subtree containing the highest residual

In Algorithm 2, unlike GHOST that takes an input of block tree T , we assume a global blockchain

blockchain is initialized with the genesis block B. HIRES initializes height to 0. If blockchain only has
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Figure 6: HIRES makes irreversible transactions.

the genesis block, then we return B; if its length is less than 6, we set height to its length; otherwise, we set

height to 5 so that we can apply the selection process for five block heights. If blockchain does not have any

block or has multiple blocks at blockchain.length − height, we iterate to find height that blockchain has a

single block by decrementing height by 1; if height is 0, then blockchain only has the genesis block, so we

return B. Otherwise, we update B with the block at blockchain.length− height of blockchain so that we go

five level down. We extend the algorithm of GHOST by checking B has any children and updating B with

its child that is the root of the subtree containing the highest residual. We return B if it does not have any

children or is at the lowest level of blockchain.

We provide a diagram to describe how HIRES selects a new parent. Figure 6 compares the block dia-

gram of HIRES and its selection process when the blocks generated by selfish mining are released at the

same time. The diagram describes that Nakamoto Consensus is vulnerable to the security threat as the

chain of attacker blocks can override the longest main chain. Attackers cannot override the blocks that

HIRES selects as their blocks have less residuals included. We know miners keep residuals after appending

their block to the main chain, so they prioritize transactions with higher residuals to include in a block.
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In details, the total value of residuals of each subtree rooted at the very first forking block is $5.6 when

adopting Nakamoto Consensus, $7.9 for HIRES, and $7.7 for the attacker. Because HIRES selects the block

rooted at its subtree as a parent and repeats its selection process within the subtree, blocks included in

subtree following Nakamoto Consensus nor the ones in the attacker’s chain cannot revert the block. Con-

sequently, the attacker has to attempt mining before the parent where forking occurs, in which they have to

spend more time and computing power to accomplish.

5.3.3 Data Collection

We collect transaction fee data from blockchain.info [3], the same source that Arthur Gervais et al. col-

lect their data to build the simulator, from May 2015 to November 2015. Our purpose is to reflect the Bitcoin

network in practice as closely as possible by extracting the data from the time frame used in the simulator.

To obtain average transaction fees included in a block each day, we divide the total transaction fees in each

day by the number of daily confirmed transactions and multiply the result with the number of transactions

in a block in the corresponding day. The procedure is repeated from the first day of May 2015 until we

have the data of the last date of November 2015. Finally, we shrink the data to have 28 intervals based

on frequently appearing residuals and count the number of occurrences each value appears between two

intervals in ascending order to obtain 27 weights. In Figure 7, we provide a probability distribution chart

of transactions fees from May 2015 to November 2015.

5.3.4 Code Modification

The Bitcoin network simulator is implemented in a style of object-oriented programming. Each miner

thread generates a block object that has a set of attributes, and each network node receives the object to

parse and verify each attribute during validation check. Our strategy is to add a new attribute representing

transaction fees to a block object so that miners can pick residuals based on the probability distribution

function. Thus, every component associated with validation or mining needs to be modified. We elaborate
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Figure 7: The probability distribution chart of transaction fees in a block.

our implementation from modifying a block object to node’s activities and its challenges.

By default, a block object has 7 attributes: blockHeight, minerId, parentBlockMinerId, blockSizeBytes,

timeCreated, timeReceived, and receivedFromIpv4 [1]. In details, when the miner generates a new block,

he sets its minerId to his Id. He calls the method getCurrentTopBlock, which returns the current highest

block in his copy of the blockchain, and sets 1 higher blockHeight. parentBlockMinerId is the previous

block’s minerId. blockSizeBytes is randomly chosen from the block size distribution [10]. timeCreated

and timeReceived are initialized to 0. Lastly, receivedFromIpv4 is the miner’s Ipv4 address.

A global blockchain is a 2D-vector such that its row represents its height and each column at each row

contains a vector of one or more block objects. After a block object is created and validated, the nodes

update timeReceived and call addBlock. The method adds a new height, or the new row in the global

blockchain, along with the block object if its blockHeight is previously unseen; if the same blockHeight ex-

ists, then it pushes the block object to the existing row of the blockchain. Thus, we need to a new attribute,

m transactionFees, in a block object for adopting HIRES. On top of that, we modify the miners to add on

top of the subtree that has the highest residual.

Firstly, we initialize a global blockchain to have the genesis block of m transactionFees = 0. In details,
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the nodes and the miners have the same local copies of the blockchain of size 1 when the simulation starts.

We incorporate the probability distribution of transaction fees from Section 5.3.3 to allow the miners pick

transaction fees based on each weight between two intervals during each mining process. We confirm each

block has different transaction fees, or residuals, as the attribute.

Secondly, we implement HIRES based on the algorithm7 in Section 5.3.2. We recall HIRES first

checks if block B has any children and updates it with its child in the subtree containing the highest resid-

ual. For checking the existence of the given block, we verify any block at 1 less blockHeight such that its

parentBlockMinerId matches the minerId of the block we are testing. Replacing the block with its child

satisfying the condition of HIRES is more complex; if the block has multiple children, then we have to com-

pare the residual of each subtree. To simplify the procedure, we use indices to retrieve our target block from

the global blockchain. Specifically, we verify the subtree leading the highest residual at each fork by setting

the initial residual to 0 and adding residuals recursively; if the input B, a block object, has any children,

then the method calls itself for each of the children and iterates the procedure until either the last block

being checked has higher height than the height of the global blockchain or it has no children. We keep the

index of each subtree to select the one having the highest residual. We update B with the first block, or the

root, of the subtree and iterate the process until we cannot find B’s children.

Lastly, we let the miners set blockHeight and parentBlockMInerId according to HIRES. For instance,

if the HIRES returns a block object at blockHeight = 15 and minerId = 3, then the miner generate a new

block that has blockHeight = 16 and parentBlockMinerId = 3. Based on the preliminary result in Section

5.2, we expect unsynchronized blockchain copies among the nodes, so we later modify HIRES to go five

level down for an optimal simulation result.

The biggest challenge of the implementation is resolving a segmentation fault. Debugging is much more

complicated as the amount of information exchange between the nodes is tremendous; when we print all

the messages between 500 nodes during simulation, the line number exceeds 40 million. The first flaw we

discover is that HIRES does not have the nullity check; For each row in the global blockchain, HIRES it-

erates from the first column to the last column without checking whether a block object exists. As described

in Section 1.1, some nodes receive block A first while others receive block B, which leads to forking and

7Our initial implementation of HIRES is to start from the genesis block.
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Typical Extreme
# Total Blocks Stale Block (%) Delay (s) # Total Blocks Stale Block (%) Delay (s)

NAKAMOTO 94.97 1.93 23.21 57.51 68.05 93.82
GHOST 99.41 4.42 0.82 57.12 67.34 91.77
HIRES 98.12 4.64 0.81 58.23 68.16 93.52

Table 4: Honest Mining Test Result 2.

different state of their public ledgers. For each mining activity, the miners call HIRES, and some of them

may not have a block object that the others have. We fix this issue by passing the nullity check every time

HIRES iterates rows in the blockchain, but the segmentation fault is still returned.

The second flaw we find is that the miners do not stop mining even though they receive a new block of

the most expensive subtree from their peers. We fix this issue by interrupting their mining activities when

a newly received block satisfies HIRES and scheduling next mining activity since the interruption. After

the modification, the segmentation is no longer present.

6 Simulation Result

We repeat the same strategy used in Section 5 and conduct experiments of three protocols, Nakamoto

Consensus, GHOST, and HIRES. We run each experiment 100 times.

6.1 Result 1

We provide an integrated result that compares the three protocols. We analyze the experimental result

in Table 4 and 5. The terminology is identically defined as in Section 5.

In Table 4, we do not see a clear difference between the three protocols when passing the extreme block

parameters. HIRES propagate as long as Nakamoto, and it is 1.75 seconds slower than GHOST. When pass-

ing the typical block parameters, HIRES generates about 1 block fewer than GHOST and 0.18 more stale

blocks. The average block propagation delay is almost identical. We can observe that GHOST and HIRES
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Typical
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 95.74 43.09 48.28 27.12 -45.29
GHOST 92.33 41.61 49.07 35.74 -29.76
HIRES 90.92 40.31 48.27 34.63 -29.98

Extreme
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 97.96 43.67 49.52 34.83 -32.16
GHOST 89.51 40.29 50.17 41.85 -18.07
HIRES 77.62 39.31 50.16 44.59 -11.86

Table 5: Selfish Mining Test Result 2.

do not differ much during honest mining simulation.

Table 5 shows a drastic difference between HIRES and the two protocols. When the extreme parameters

are given, HIRES generates the fewest blocks in the main chain, being 80% of the blocks generated under

Nakamoto and 86% of the blocks in GHOST. Although it has the lowest stale block rate, it only differs by

4.4% with the protocol that has the highest stale block rate. The number of selfishly mined blocks are almost

identical, but the rate included in the main chain demonstrates Nakamoto Consensus incentivizes the least

for selfish mining, then GHOST, and finally HIRES. According to the result, HIRES is the most vulnerable

protocol among the cluster.

The experiment result of passing the typical block parameters supports the idea that Nakamoto Consen-

sus is the most secure among the three protocols. It incentivizes the least for selfish mining, almost letting

the attacker waste the half of his work. GHOST and HIRES are almost identical in the result. Therefore,

in this experiment, we analyze GHOST and HIRE are equally fast under the extreme and typical block pa-

rameters when no security threat is present; HIRES is the most vulnerable under the extreme parameters

when the selfish miner has more than half of the computational power; Nakamoto is the slowest but is more

resilient and more likely to let attackers lose money.
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Figure 8: The optimal probability distribution chart of transaction fees in a block.

6.2 Result 1: Flaw and Solution

Based on the simulation result, we suspect the probability distribution of transaction fees is not accurate;

while the source code of the simulator contains 201 intervals and 200 weights for generating the probability

distribution of block sizes, we only have less than 30 transactions intervals to pick. In Figure 7, we can

observe that more than 80% of transaction fees are less than 0.2 BTC; more than 60% of the blocks are likely

to be less than half of the maximum transaction fee, 0.35 BTC, that can be drawn from the distribution.

According to the distribution, HIRES is more vulnerable than GHOST, because if the attackers can generate

blocks of residuals greater than 0.25 BTC consecutively, the likelihood of making more expensive private

chain is higher. Therefore, we adjust the range of intervals and weights to draw accurate results. We redis-

tribute residual values to make a new probability distribution composed of 201 intervals and 200 weights.

The following figure is presented to show the difference between the two probability distributions used

during simulation. In Figure 8, we show a more optimal probability distribution of residuals per block. We

can observe that weights range from 0.5 at a minimum to 2.5 at a maximum for each residual interval.
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Typical
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 95.74 43.09 48.28 27.12 -45.29
GHOST 92.33 41.61 49.07 35.74 -29.76
HIRES 94.69 40.48 50.61 36.46 -30.17

Extreme
# Total Blocks Stale Block (%) # Selfish Blocks # Selfish Income Selfish Profit (%)

NAKAMOTO 97.96 43.67 49.52 34.83 -32.16
GHOST 89.51 40.29 50.17 41.85 -18.07
HIRES 88.63 35.68 49.84 41.55 -18.20

Table 6: Selfish Mining Test Result 3.

6.3 Result 2

We use the new probability distribution of residuals to draw more accurate simulation result. We reflect

the previous simulation result where GHOST and HIRES are almost identical during honest mining tests.

Thus, we only conduct selfish mining tests with the extreme and typical parameters. Table 6 shows the

empirical data.

We see a clear difference with the data in Table 5 under the extreme block parameters where HIRES

adds fewer blocks in blockchain and incentivizes the selfish-miner 7% more than the current data. When

passing the extreme parameters, HIRES generates the fewest stale blocks, but it is still less secure than

Nakamoto Consensus in terms of incentivizing selfish mining activity. When passing the typical block pa-

rameters, HIRES has the lowest stale block rate and incentivizes less than GHOST. The data also shows that

Nakamoto Consensus is more secure than any other protocols it is being compared to.

7 Conclusion

In our experiments, the network nodes following HIRES and GHOST propagate blocks almost 30 times

faster than those adopting Nakamoto Consensus, but the latter is the most resilient policy among them.

HIRES generates less stale blocks than GHOST, but we cannot conclude HIRES is always more secure than

GHOST because the difference in incentivizing selfish miners is minuscule. Even though our main con-
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tribution to extending GHOST to propose a policy that is as fast as GHOST and as resilient as Nakamoto

Consensus is not successful in simulation, we justify the result with possible threats to validity.

First of all, we do not know whether the source code of Arthur Gervais’s Bitcoin network simulator [1]

does not have any flaws in design and implementation. For selfish mining, the simulator does not imple-

ment the nodes’ activities, and we suspect the extension can change the simulation result. We point out

Arthur Gervais et al. retrieve the block data almost 3 years ago and design the block size probability dis-

tribution in the source code. Thus, we are unable to tell whether the simulator aptly reflects the current

Bitcoin environment.

Secondly, we cannot guarantee our modification of the source code does not have any flaws in design

and implementation. Even though we do not get any segmentation fault, we only iterate each experiment

100 times to confirm the validity of our code. To that extent, running more experiments may trigger an

internal error and pose a validity threat to the result.

Lastly, we retrieve transaction fees from May 2015 to November 2015 [3] and incorporate the probability

distribution of transaction fees to derive empirical results as Arthur Gervais et al. do in their work. To more

aptly test the code and derive accurate simulation results, we need to use recent Bitcoin data.

In reality, Bitcoin network is much bigger and complicated, and not only internal factors such as hashing

and transaction processing but also external factors such as network bandwidth and geographic distribu-

tion of network nodes, including the block parameters we take into account during simulation, affect the

performance and security of blockchain. We need a more elaborate mathematical approach to hypothesize

a concrete foundation of Bitcoin blockchain policy.

8 Future Work

In future work, we would like to test the validity of the Bitcoin network simulator and our modification

to test HIRES. Specifically, we want to test how aptly the simulator and our code reflect the current Bitcoin

scheme when incorporating recent Bitcoin data. On top of that, we can extend the source code to model the

network nodes’ activities during selfish mining to observe clear differences between Nakamoto Consensus,
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GHOST, and HIRES in terms of the efficiency and the security of Bitcoin blockchain. Lastly, we would like

to extend our work on HIRES and propose a policy based on mathematical research.
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