
Exploiting the Dynamics of Tensegrities Via Morphological
Computation

James M. Boggs John Rieffel (Advisor)
Computer Science Department, Union College

Abstract

Tensegrity robots are a class of soft robots which are comprised of rigid
struts connected by springs under tension in such a way as to maintain
a flexible resting form. These robots have dynamic and complex physical
properties which make it impossible to predict how an actuation will af-
fect the system. We are attempting to utilize, rather than mitigate, this
physical dynamism by using morphological computation, which treats the
physical system as implicitly performing computations. Specifically, we
will implement a simple spiking neuron on each strut and treat the sys-
tem as a whole as a spiking neural network, with communication between
neurons implicit in the vibrational activity of the strut and looking for
emergent behavior. Ultimately, we hope that the physical system can be
used to produce a robust central pattern generator to generate an effective
forward gait for the robot.

Introduction

Tensegrity robots are composed of rigid struts connected to each other by
tensile links (usually springs) such that the opposing tensile forces of the links
result in the structure taking on and maintaining a flexible form. Union’s
VVValtr, seen in Figure 1, is an example of a tensegrity robot.

Figure 1: A roughly life-sized picture of our current tensegrity robot, VVValtr (VVireless
Vibrationally Actuated Tensegrity Robot.

We use vibration to induce locomotion, which has been shown to be effective
in [1]. We will use the complex physical dynamics of the tensegrity to perform
implicit computations, as described and shown in [2] and [3]. In particular,
we will use morphological computation to run a spiking neural network imple-
mentation of a central pattern generator. This will produce a steady pattern
of vibrations which will hopefully move the tensegrity forward effectively.

Goal

We will demonstrate that the complex physical dynamics of a tensegrity
system can be used to offload computational load, to allow for the decentral-
ization of a control algorithm, and to add robustness to the control algorithm.
Specifically, we will be treating each strut as a independent spiking neuron,
and we will attempt to entrain a CPG in the tensegrity as a whole. Thus, the
neural network itself will not be running on any computer, reducing compu-
tation and improving the robustness of the control system by decentralizing
it. Additionally, we suspect that even after being perturbed by an obstacle,
the system will return to a stable and effective gate since the tensegrity itself
will return to its resting physical state.

Methods

We will design a simple spiking neuron in Arduino, which takes as input
acceleration and gyroscopic motion in the x-, y-, and z-axes and output a
frequency for the attached motor to spin at. The code will also listen for
Bluetooth communication which can start or stop the neuron and adjust its
weights. Each strut with a motor and controller will be running this code. A
Python program running on the central computer will evolve effective weights
for each neuron (i.e., strut) by running the neuron for a short period of time
and tracking the movement of the tensegrity as a whole, as seen in Figure 2.

Figure 2: The view of the tracking code looking at the tensegrity. The code thresholds a
black and white image to find the tensegrity, the reports the center.

Current Progress and Next Steps

We have finished designing and building wireless tensegrities with indepen-
dent strut controllers. Next term we will first use this to get data on the
effectiveness of other methods of generating tensegrity gaits such as genetic
algorithms and Bayesian optimization. Next, we will implement the neuron
code in Arduino and write Python experimental code capable of evolving
the neurons’ weights, then test this code and see how it compares to previous
attempts in terms of its ability to generate an effective forward gait. Finally,
if we can find a set of neuron weights which produce an effective gait, we will
test the robot’s ability to handle obstacles in its path. The neuron code will
look something like Figure 3.

0 10

1

φ

∑n
i=1 xiwi

n

accel_x

accel_y

accel_z

gyro_x

gyro_y

gyro_z

motor_freq

w1
w2
w3

w4
w5
w6

Figure 3: Diagram of the expected neuron code for each strut. Acceleration and gyroscopic
data is weighted and averaged, and a linear function will output an appropriate motor frequency.

Acknowledgments

I would like to thank Kentaro Barhydt, Mitchell Clifford, Tommy Sipple, and
Katerina Petridou for designing and building VVValtr.

References

[1] M. Khazanov, B. Humphreys, W. D. Keat, and J. Rieffel, “Exploiting dynamical complexity in a physical tensegrity robot to achieve locomotion.,” in
ECAL 2013, pp. 965–972, Union College, 2013.

[2] J. A. Rieffel, F. J. Valero-Cuevas, and H. Lipson, “Morphological communication: exploiting coupled dynamics in a complex mechanical structure to
achieve locomotion,” Journal of the royal society interface, vol. 7, no. 45, pp. 613–621, 2010.

[3] K. Caluwaerts, M. D’Haene, D. Verstraeten, and B. Schrauwen, “Locomotion without a brain: physical reservoir computing in tensegrity structures,”
Artificial life, vol. 19, no. 1, pp. 35–66, 2013.

[4] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control of tensegrity robots for locomotion,” IEEE Transactions on Robotics, vol. 22, no. 5,
pp. 944–957, 2006.

[5] A. Agogino, V. SunSpiral, and D. Atkinson, “Super ball bot-structures for planetary landing and exploration,” NASA Innovative Advanced Concepts
(NIAC) Program, Final Report, 2013.

[6] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Controlling tensegrity robots through evolution,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation, pp. 1293–1300, ACM, 2013.

[7] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Flop and roll: Learning robust goal-directed locomotion for a tensegrity robot,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 2236–2243, IEEE, 2014.


