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Motivation

Image retrieval systems are supposed to only retrieve
images that are relevant to a given query. There-
fore, they need methods by which to represent the
meaning of both the query word and the image, so
that these meanings can then be compared. Distribu-
tional semantic models typically use semantic vectors
to represent words’ meanings, based on the extent to
which they appear near other words in text. By com-
paring these semantic vectors, we can compare words’
meanings, and thus find words that are simlar or rel-
evant to each other. In this study, I extend this idea,
to implement an improved image retrieval system: I
build semantic vectors for both words in text and cap-
tioned images, and compare these vectors to find, for
each query term, the image whose meaning is most
relevant to the query’s meaning.

Background

Key Terms and Techniques
• “Vector space models (VSMs) . . . [embed] words in
a continuous vector space where semantically similar
words are mapped to nearby points”1

• Distributional semantic models (DSMs)2 find
similarities between individual words’ VSMs to find
similarities between words’ meanings (see Table 1)

• Multimodal semantic models integrate information
from VSMs across text, images, etc. to find more
accurate word similarities3

• Propagation: select information from perceptual
dataset, add to textual dataset

• Textual data refers to pure text corpus; perceptal
data refers to image captions/descriptions

Word Semantic Vector
cat −0.351283,−0.065883,−0.091065, . . .
pet −0.322014,−0.042600,−0.0781283 . . .
tuba 0.106879, 0.006146, 0.134201 . . .

Table 1: “Cat” and “pet” have similar vector space representations,
because their meanings are similar. “Tuba” is similar to neither word.

• Concrete word examples: cat, chocolate
• Abstract word examples: love, war

Multimodal Distributional
Semantics
• Hill and Korhonen (H&K): if word occurs in both
pure text and captions, then its nearest neighbors in
captions should relate to its nearest neighbors in text

• Propagation of words’ information to text improved
semantic representation (SR) of concrete terms

• For words that occur in ESP-Game or CSLB
captions, map word to list of words that co-occur with
it → “bag of perceptual features” 4 (BoPF)

• Given a word in text that occurs in both perceptual
datasets, H&K inserted “pseudo-sentences” of word
and its context words from its BoPF into Text8

• For many abstract terms, H&K’s model actually
performed worse than when SRs produced by text

• H&K also tried limiting propagation only to concrete
words’ SRs, whenever they occurred in the text

• Results: improved SRs for abstract and concrete
words alike, from purely textual VSMs.

• Suggests that basis for whether word can effectively
be represented with images is its concreteness

Question

When querying an image retrieval system with a
word associated with no image, how does propagating
perceptual information to the word’s SR affect the
system’s ability to retrieve relevant images?

Distributional Semantics for Image
Retrieval

• Abstract query term “elegant” not likely to be in
image captions, so cannot by itself return relevant
images

• Even if most similar words to “elegant” are
abstract, cannot be used, so must look for most
similar that are also in perceptual datasets

Figure 1: High cosine similarity between words’ VSMs indicates
high similarity between semantic meanings.

Query-Image Comparison

Figure 2: Technique A: for each captioned image, average the
vectors of the image’s caption words, and compare the average vector
with the query term’s vector.

Figure 3: Technique B: only compare query term’s vector with
images that are directly tagged by words that are relatively similar to
the query term in the textual corpus.

Experiment

• Using H&K’s textual and perceptual corpora, apply
five different approaches to retrieve images, four of
which utilize distributional semantic techniques:

1 Retrieve images directly tagged by given query
2 Technique A, using word vectors derived from the plain Text8

corpus,
3 Technique B, applied to the abovementiond plain Text8 corpus,
4 Technique A, applied to Text8, augmented by the perceptual

information that was propagated to it,
5 Technique B, applied to the abovementioned augmented Text8

corpus
• Tested techniques over a set of 32 nouns and verbs,
of varying concreteness

Results

Figure 4: Each approach’s mean average precision (MAP), over the
average precisions of human relevance ratings of the images returned
for each query term.

Figure 5: Each approach’s mean average precision (MAP), over
the average precisions of unique subsets of 4 query terms.
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