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Abstract

The context in which a word appears in natural language often influences its
interpretation in such a way that the base meaning of the word is changed
or made more specific. Polysemy and metonymy are examples for this phe-
nomenon. These meaning shifts of words can be modeled by augmenting the
semantic representation of a natural language utterance with the information
that is missing to make the shift in meaning explicit. This information can
be provided by linguistic or non-linguistic sources or an interaction of both.

Recently, Egg (1999) has suggested an account of meaning shifts which ex-
ploits underspecification methods to yield a monotonic augmentation process.
The main idea is to have semantic construction derive a sufficiently relaxed
(i.e. made less specific) semantic representation, so that adding the missing
information is simply further specification of this representation.

This thesis will examine a treatment of meaning shifts due to systematic
polysemy or metonymy within Egg’s framework. We will present a syn-
tax/semantics interface which derives appropriately relaxed semantic rep-
resentations. To account for meaning shifts these representations can be
augmented monotonically with additional information.

We will point out a potential problem for this approach: making underspec-
ified semantic representations less specific may cause overgeneration. How-
ever, as we will show, for our applications relaxation is safe, i.e. there is no
danger of overgeneration.

The underspecification formalism that we will use throughout this thesis is
in the class of tree description languages subsuming dominance constraints.
We will distinguish a novel class of subconstraints with a certain structure
which powerfully support the type of inferences on dominance and disjoint-
ness which we have to make for proving safety of relaxation.



JACK We'll split up the week. You can have lymphoma, tuberculosis
and ...

MARLA You take tuberculosis. My smoking doesn’t go over at all.
JACK I think testicular cancer should be no contest.

MARLA Well, technically, I have more of a right to be there than you. You
still have your balls.

JACK You're kidding.

MARLA Idon’t know ... am I? I'll take the parasites.

JACK You can’t have both parasites. You can take blood parasites ...
MARLA I want brain parasites.

JACK Okay. T'll take blood parasites and organic brain dementia . ..
MARLA I want that.

JACK You can’t have the whole brain!

MARLA So far, you have four and I only have two!

JACK Then, take blood parasites. It’s yours. Now we each have three.

MARLA So, we each have three — that’s six. What about the seventh day?
I want ascending bowel cancer.

JACK I want ascending bowel cancer.

MARLA That’s your favorite, too? Tried to slip it by me, eh?

JACK We'll split it. You get it the first and third Sunday of the month.
MARLA Deal.

from: Fight Club, 1999. Directed by David Fincher.

Marla and Jack are discussing who may go to which self-help group.
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Chapter 1

Introduction

In this chapter, we give an overview over the topic of this thesis and introduce
the main concepts, such as meaning shift, semantic underspecification, tree
descriptions, and relaxation of tree descriptions.

1.1 Meaning Shifts

Lexical semantics studies the meaning of words.An interesting problem in
lexical semantics is that sometimes the original meaning of a word does not
match the context, as in the following examples, which are discussed in great
detail in (Nunberg 1995) and (Pustejovsky 1995).

(1.1) (a) 'm parked out back.
(b) Mary began a book.

In 1.1 (a) parked out back requires a vehicle as its argument, but what is
given is a person, namely the speaker. Furthermore, it is striking that this
sentence can be felicitously uttered by somebody standing right next to you
inside the house if only his car is parked out back. Since it seems neither
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plausible to assume a second base meanings for I (denoting the speaker s car)
nor for parked (denoting a property of human beings instead of vehicles), we
have to assume that the base meaning of either one is shifted in the course
of semantic processing.

In 1.1 (b) things are similar: One can only begin to do something. begin
should therefore require one of its arguments to be an individual (correspond-
ing to the agent) and the other one to be something expressing the eventuality
or action which is begun. Let’s assume here for the purpose of this presen-
tation that this is reflected by an argument of type t.! The semantic type
of begin is then (t, (e, t)). book clearly denotes a property of individuals; it
is of the semantic type (e,t). In combining the semantic representations of
the lexical items, a simple semantic construction, which considers only in-
formation explicitly mentioned in the utterance, would derive the following
semantic representation.

a(book)(Az.begin(z)(mary))

It contains a type conflict, since book constrains the z to be of type e, while
begin requires it to be of type t.? In fact, the usual way to understand this
sentence is as Mary began to read a book (or perhaps Mary began to write a
book, if Mary is known to be an author). So a human hearer understands
things which are not explicitly uttered, but which can be inferred from the
context and general knowledge about the world. The semantic representation
is augmented by this additional information, as shown below (new parts,
w.r.t. the semantic representation based on purely linguistic information, are
underlined).

a(book)(Az.begin(read(z)(mary))(mary))

'In a Davidsonian representation begin would probably require an event type as argu-
ment. This would still lead to a type or sort conflict and not significantly affect the point
that we want to make here by using this example.

20ne possible way out would of course be to assume more than one lexical entry for
the verb to begin, which fills in an expression expressing that something is done to the
argument individual in case of an NP object. This would lead to a semantic representation
as a(book)(Az.begin(ACT _ON (x)(mary))(mary)). However, it has been argued elsewhere
(Pustejovsky 1995) extensively, why this is not a desirable solution. We will briefly return
to this question in Chapter 2.
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This augmentation of the semantic representation due to knowledge which is
not made explicit in the utterance is what causes the meaning shift. We will
call the material with which the semantic representation is augmented the
shift operator.

1.2 Semantic Underspecification

In the past years, underspecification has become a popular device for describ-
ing cases of semantic ambiguity in such a way that the exhaustive enumer-
ation of all readings is avoided (see. e.g. van Deemter and Peters (1996)).
Here, we will adopt the view on semantic underspecification put forward by
Pinkal (1995). He proposes to radically underspecify in all cases in which,
for some reason or another, information is not complete. There are many
reasons for incomplete information in natural language (ambiguities on all
levels of linguistic processing, ungrammatical utterances in spoken language,
disturbed acoustic signal in noisy environments etc.). Traditionally, linguis-
tic processing has fully specified representations of the semantic content of
an utterance as its goal. In cases where this content cannot be completely
determined by linguistic information alone, the result has to account for all
possible readings and is therefore a set of semantic representations. This
set may easily become quite large, which makes further processing ineffi-
cient. Underspecification tries to overcome this problem by assuming the
result of linguistic processing to be one underspecified representation. This
underspecified representation is built according to the amount of informa-
tion available at the time of processing. What is not known for sure, is not
considered. In this way, the result describes all readings the utterance in
question could possibly have and, of course, it should describe only these.

We will now give an informal introduction to the basic ideas of underspecifi-
cation. In Chapter 4 we will present an underspecification formalism in full
detail.

The main idea in most underspecification formalisms is to take the represen-
tation language that we use for fully specified readings as the object language.
We can then devise a meta language which lets us talk about expressions of
the object language in an underspecified way. That is, one expression of the
meta language describes a set of object language expressions without enumer-
ating them. The underspecified meta language representation can then be
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further specified when new information is gained, possibly from non-linguistic
sources. Further processing now has to consider only one representation and
enumeration of all readings is delayed as long as possible or necessary.

To illustrate how underspecification works, we will use the following well-
known example containing a scope ambiguity:

(1.2) Every man loves a woman.

This sentence contains two scope bearing elements, namely the two quanti-
fiers (every man and a woman). Their ordering with respect to scope is free.
This gives rise to two possible readings, which are as follows:

every(man)(Az1.a(woman)(Axe.love(x1)(z2)))

a(woman)(Axs.every(man)(Az1.love(x1)(z2)))

In the first case, the universal quantifier has wide scope over the existential
quantifier and in the second case, it is the other way round. But both readings
are built from the same “semantic material”, i.e. the following “fragments”:

1) every(man)(Az;.e) 2) a(woman)(Az;.e) 3) love(z1)(x2)

A e intuitively stands for a hole into which additional material can be filled.
The only difference between the two readings is that the fragments are com-
posed in different ways. Figure 1.1 describes the possible ways of arranging
the fragments into one formula. The dotted lines express that fragment 3)
has to be a part, proper or not, of the material which is filled into the holes
of the fragments 1) and 2). This leaves two possibilities of arranging the
fragments: firstly, fragment 3) is filled into the hole of fragment 1), which is
then filled into the hole of fragment 2); secondly, fragment 3) can be used to
fill the hole of fragment 2), which then goes into the hole of fragment 1).

Although the details may differ, in principle most underspecification for-
malisms work in a very similar fashion (e.g. Bos 1996; Reyle 1993). In par-
ticular, the Constraint Language for Lambda Structures (CLLS) (Egg et al.
1998), which is the underspecification formalism that we will use through-
out this thesis, does. CLLS is a tree description language, i.e. it is a meta
language for talking about sets of trees, which are expressions of the object
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every(man)(Az;.e) a(wom?@) (Az2.0)

Z‘ové(ii).(ég)

Figure 1.1: Underspecified representation of Every man loves a woman

language. Since logical formulas can be represented by trees it can be used as
a formalism for semantic underspecification. Trees are described in CLLS by
a set of constraints on the relative position and the labeling of their nodes.
Underspecification is introduced by dominance constraints which state that
two nodes ni, ny are either equal or one is “above” the other in the tree.
This leaves unspecified whether there are any and if how many nodes on the
path from n; to ny. CLLS is introduced in Chapter 4.

1.3 Underspecified Representations of Mean-
ing Shifts

Markus Egg (Egg 1999) proposes a view on phenomena of meaning shift
which exploits underspecification mechanisms as presented in the previous
section. His idea is to introduce dotted edges as we saw above at all places
where it could be necessary to introduce a shift operator. This yields a relazed
semantic representation; the representation is less specific and allows for new
material to be included into the representation. Remember that a dotted
edge from a hole to a fragment means that the only restriction on what’s
used to fill the hole is that it has to contain the fragment. So the dotted
edges can be taken to be gaps in the semantic representation, which allow
to introduce new material (such as a shift operator). If the introduction of
a shift operator is not necessary, the gap can be closed, i.e. the hole is filled
with the fragment it is connected to by the dotted edge.

In Egg’s approach, the (relaxed) semantic representation which semantic
construction derives for Mary began a book is:
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a(book)(Az.begin(mary, 0))

If we just closed the gap, we would end up with a type conflict, as explained
in Section 1.1.

However, we now have the option of filling an appropriate shift operator, e.g.
read(mary, e),

into the gap. This would produce the following semantic representation:
a(book)(Az.begin(mary, 0))
regad(mary, o)
z

All the gaps in this representation can be closed without running into a type
conflict, and the result is the intended reading, namely

a(book)(Ax.begin(mary, read(mary, x))).

This approach to modeling meaning shifts compiles the destructive part of
it, namely breaking up the semantic representation to be able to fill in the
missing information, into the syntax/semantics interface. The shift operator
can then be added by simply instantiating gaps.

This approach will be presented in more detail in Chapter 5.

1.4 Contribution

Relaxing underspecified semantic representations means making an under-
specified representations even less specific. We will point out that this may
lead to structurally new solutions, i.e. solutions which differ from solutions
for the unrelaxed representation not only at the relaxation site. In cases
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where relaxation was done solely for the purpose of augmenting the semantic
representation with new material, a problem of overgeneration arises. The
central idea of Egg’s (1999) approach to modeling meaning shifts relies on re-
laxing underspecified semantic representations for augmentation by the shift
operator. This means that Egg’s approach is in principle subject to the same
danger of overgeneration.

We will investigate this problem in the framework of CLLS, where underspec-
ified representations are expressed by tree descriptions subsuming dominance
constraints. We will formulate a criterion which ensures that an underspec-
ified representation can be relaxed without adding unwanted readings. In
developing tools for proving satisfiedness of the criterion, we will distinguish
a substructure of constraints with particularly pleasant properties, that is of
importance not only in connection with our particular problem.

We will apply the criterion to analyses of polysemy and metonymy which
are along the lines of Egg’s approach. We will present a syntax/semantics
interface that derives relaxed underspecified semantic representations and
thus provides the basic structures for a treatment of meaning shift based
on Egg’s proposal. We will then prove that this syntax/semantics interface
never leads to any overgeneration of the type discussed above.

Relaxing the semantic representations is only the very first step in the process
of meaning shift. It will be in the center of this work, though. We will only
very briefly discuss further questions, such as how to find the appropriate
shift operator, which is a problem that is still largely unsolved. We will show
how previously suggested solutions, such as qualia structure (Pustejovsky
1995), dotted or hybrid sorts (Pustejovsky 1995; Délling 1994), intersortal
relations (D6lling 1994), are not in opposition to Egg’s approach, but could
be incorporated.

1.5 Structure of the Thesis

In Chapter 2 will introduce the linguistic background of this thesis. We
will examine the phenomena of lexical semantics we are interested in and
distinguish polysemy, metonymy, and metaphor as phenomena of meaning
shift. We will then briefly address the main questions which have to be dealt
with by a process of meaning shift.
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In Chapter 3, we will present previous work that has been done on mean-
ing shifts. We will discuss four approaches. Doélling (1994), more explicitly
than the others, explains meaning shifts by augmentation of the semantic
representation with a shift operator. Hobbs et al. (1993) suggest to model
meaning shift by inference on world knowledge, while Pustejovsky (1995) re-
lies only on lexicalized information. Copestake and Lascarides (1998), finally,
argue that meaning shifts are influenced by both, lexical as well as pragmatic,
knowledge. They use a default logic and inference on world knowledge and
discourse structure to capture this.

Chapter 4 will present the formal background of this thesis. It will introduce
CLLS (Constraint Language for Lambda Structures), the underspecification
formalism which we will use throughout the rest of this thesis. We will
illustrate its use for linguistic applications by describing the application to
scope ambiguity. Furthermore, we will present a syntax/semantics interface
which compositionally derives underspecified semantic representations.

In Chapter 5 Egg’s approach to meaning shift is developed in this formalism.
We will show that relaxation of underspecified semantic descriptions, the
main strategy in Egg’s approach, can in principle lead to overgeneration,
but in the case of its application to modeling meaning shifts never does.
In developing tools for proving this we will discover some interesting novel
properties of a certain subclass of constraints.

In Chapter 6 we will show how previously suggested solutions, such as qualia
structure (Pustejovsky 1995), dotted or hybrid sorts (Pustejovsky 1995; Délling
1994), intersortal relations (D6lling 1994), could be incorporated into Egg’s
approach.

Finally, Chapter 7 is devoted to open questions and future work.
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Chapter 2

Meaning Shifts

In this chapter I will examine more closely those phenomena of lexical se-
mantics which we are concerned with in this thesis. After having classified
them, we will look at different aspects of a treatment based on the insertion
of a shift operator.

2.1 Meaning Shifts in Lexical Semantics

Cases where a word can be used to mean different things depending on the
context it appears in are abundant in lexical semantics. Four classes of phe-
nomena have received particular attention: homonymy, polysemy, metonymy,
and metaphor. We will now introduce the properties that are usually ascribed
to these phenomena and then discuss which of them are cases of meaning
shift.

2.1.1 Homonymy and Polysemy

Homonymy and Polysemy are cases of lexical ambiguity, where one word form
has several different meanings. The examples in 2.1 illustrate the lexical
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ambiguity of the words bank and newspaper.

(2.1) (al) Susan walks along the bank of the river.
a2) The bank was robbed last night.

bl) The newspaper was founded in 1891.
b2)

b3)

John spilled coffee on the newspaper.

(
(
(
( Mary is reading a newspaper.

In 2.1 (al) bank refers to the shore of a river, while in 2.1 (a2) it refers to a
financial institution. In all of these cases the context disambiguates which is
the intended meaning. Similarly, contextual restrictions imply that 2.1 (b1)
is talking about an publishing company, while in 2.1 (b2) John spilled coffee
on a paper object, and in 2.1 (b3) the word newspaper is carrying a notion of
information.

The definitions of homonymy and polysemy which can be found in the liter-
ature vary and imply different classifications of some examples of lexical am-
biguity. Fries (1980) distinguishes approaches with a diachronic perspective
from those with a synchronic perspective. Under a diachronic perspective the
distinction between homonymy and polysemy is made according to etymo-
logical criteria: if the different senses a word has are etymologically related
one speaks of polysemy, while the different senses of homonymic words are
derived from etymologically different stems and word forms only accidentally
coincide. However, people are often not aware of etymological relationships,
so that such a criterion is not adequate under a synchronic perspective. Un-
der a synchronic perspective we can distinguish between objective and sub-
jective criteria to characterize homonymy and polysemy. As “hard” criteria
morpho-syntactic and morpho-phonological differences (e.g. the difference
of gender between the German words for pine tree, i.e. die Kiefer, and jaw,
i.e. der Kiefer) can be used. If such a difference can be found, the ambiguity
is classified as homonymy. In addition to these objective criteria, the degree
of difference between different senses of an ambiguous word and the degree
of unity they exhibit is also often used. These are subjective criteria, so that
the distinction between homonymy and polysemy becomes fuzzy.

As for the examples in 2.1, bank is a clear case of homonymy and the am-
biguity illustrated by 2.1 (b2) and 2.1 (b3) is a clear case of polysemy. The

19



ambiguity between the company-reading of newspaper on the one hand and
the other two readings on the other hand, however, could, from a synchronic
point of view, be argued to be an example of homonymy. From my sub-
jective point of view the company-reading of newspaper and the information
bearing paper object-reading are sufficiently different and do not exhibit much
unity (although they are of course related). In fact there have been differing
opinions on how to treat newspaper (cf. (Copestake and Briscoe 1995)).

An interesting fact about polysemy is that it might give rise to a polymor-
phous and vague behavior as illustrated by the following examples.

(2.2) (a) Mary painted the door blue.
(b) Mary walked through the door.
(c) Mary opened the door.
(d) A dwarf stepped out of the blue door.

In 2.2 (a) door is used to make reference to a physical object, while 2.2 (b)
talks about an aperture. Both of these aspects seem to be involved in 2.2 (c).
It is not possible to unambiguously decide whether we are talking about the
physical object or the aperture sense of door. A similar effect is produced
by 2.2(d). Here, the meaning of the word door which is only realized once
on the surface seems to vary from one semantic occurrence to another: blue
requires the physical object aspect and step out of the aperture one.

2.1.2 Metonymy and Metaphor

Metonymy and Metaphor are rhetorical stylistic devices which allow to refer
to an object or event by using words or expressions that are in some kind of
relationship to the described object or event, but do not exactly match the
properties of the object under a conventional interpretation. Consider the
following examples:

(2.3) (a) Goethe is widely read. (for: Many people read books by Goethe)

(b) John is wearing silk. (for: John is wearing clothes made out of

silk)
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(c¢) This pig never washes. (for: This person never washes and
therefore has some properties usually ascribed to pigs.)

Bartsch (1984) describes metonymy and metaphor as phenomena which trig-
ger a non-literal interpretation of certain words or expressions. Some prop-
erties which would be implied by a literal interpretation might be totally
eliminated, while others are strengthened. In her analysis metaphor relies on
a similarity relation between the literal meaning of an expression and what it
is used to refer to, i.e. they share some (but not necessarily all) characteris-
tics. If, on the other hand, a factual relationship, such as a spatial, temporal,
or causal relation ship, is exploited, she talks about metonymy. Under this
definition Examples 2.3 (a) (product/producer relationship) and 2.3 (b) (ma-
terial /product relationship) are cases of metonymy, while 2.3 (c) is a case of
metaphor.

It should be noted that the use of such rhetorical devices is not simply a sub-
stitution of one expression by another while the meaning does not change.
Usually, the metaphorical or metonymic expression carries further connota-
tions and aspects which all influence the picture which is evoked. Consider
e.g. the following example due to Cruse (1991).

(2.4) The huge locomotive snorted and belched its way across the plain.

In addition to making a statement about the noises the locomotive produces,
the sentences associates it with a “gigantic” animal, which connotes further
characteristics.

2.1.3 Meaning Shift

We defined meaning shift in the introduction to be a process that changes
the base meaning of a word and we claimed that it could be modeled by
augmenting the semantic representation of a given utterance with additional
material (a shift operator).

Metonymy and metaphor most clearly seem to be cases of meaning shift, since
one of their major features is that the literary meaning (the base meaning)
of an expression is modified. Actually, the examples we discussed in the
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introduction as a motivation for an operation of meaning shift (I am parked
out back and Mary began a book) are cases of metonymy.

So by meaning shift we can capture the relationship that holds between the
literal meaning of a metonymically or metaphorically used expression and
the object or event it is used to describe. We argued above, however, that
the usage of such rhetorical devices may have further effects. So, for example
the pure existence of some kind of relationship doesn’t justify the metonymic
or metaphoric usage. We will briefly consider such restrictions in the next
section. As for others of these “additional” effects, we will not go into them
here, since they were not in the center of the work presented in this thesis.

The essence of the various definitions which have been suggested for homonymy
and polysemy is that the different senses of a homonymic expression are, in
contrast to the case of polysemy, rather unrelated and should be considered
as different lexemes. Cruse’s (1991) definition makes this precise. He regards
one lexeme which has several senses as polysemic and different lexemes which
have identical word forms as homonymic. This means that finding the right
interpretation of a homonymic word is a question of retrieving the right lex-
ical entry (no meaning shift is involved), while in the case of polysemy there
has to be a mechanism which selects a meaning according to contextual and
other restrictions. So this is not really a case of shifting the meaning of a
word, but rather of making it more precise. We will see later (in Chapter 6),
however, that this is not necessarily a totally different operation and can be
modeled by augmenting the semantic representation.

2.2 Modeling Meaning Shifts by Augmenta-
tion of the Semantic Representation

We defined augmentation of semantic representations as adding material to a
semantic representation. We will use this operation to model meaning shifts
and the material that we will augment the semantic representation with
is an appropriate shift operator. This immediately brings up three ques-
tions. First, under which circumstances is adding a shift operator necessary,
i.e. what triggers meaning shifts? Second, where in the semantic representa-
tion is the shift operator to be filled in? And finally, what ¢s an appropriate
shift operator and where does the missing information come from? In the
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remainder of this chapter, we will address each of these three questions in
turn and examine them with respect to examples of systematic polysemy and
metonymy.

2.2.1 When to Add a Shift Operator

In all examples we have seen so far, meaning shift was necessary to circumvent
sort or type conflicts in the semantic representation. Remember, for example,
once again the sentence I am parked out back, where parked out back requires
an argument of sort vehicle while what is given is of sort human.

In general, meaning shift is triggered by such a lurking sort or type conflict.
However, sometimes the original meaning of some word has to be adapted to
fit the context, even without the occurrence of such a conflict. The following
utterance, made by my aunt to her daughter, who had just taken a picture
of the family, is an example.

(2.5) Ich hoffe, du hast uns nicht die Kopfe abgeschnitten.
‘T hope you haven’t cut off our heads.’

There is no sort or type conflict involved, but world knowledge gives clear
preference to the reinterpreted reading in which our heads does not refer to
the heads of the real persons, but to their picture.

Besides, there are also cases in which meaning shift is not possible, as in the
following example given by Nunberg (1995).

(2.6) I was once driven by Jean Gabin.

2.6 sounds odd if the intended meaning is that it is the speaker’s car which
was once driven by Jean Gabin. In principle, there is a shift operator making
it possible to use a person to refer to his car (cf. I am/The old man is parked
out back), but here it is not available. It is still an open problem to explain
what restricts meaning shift.

Nunberg tries to capture these restrictions by requiring that what is said
about the transferred meaning of a word has to be noteworthy of the original
meaning, it has to somehow classify the object referred to by the original
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meaning in the current situation or in general. Nunberg argues that having
a vehicle which is parked out back may classify a person in certain situations
while having a car that was once driven by Jean Gabin usually doesn’t. So
I am parked out back is acceptable while I was once driven by Jean Gabin is
not.

(Copestake and Briscoe 1995) found that another factor restricting meaning
shift is blocking of synonyms. They argue that 2.7 (a) and 2.7 (b) are highly
marked in contrast to 2.7 (c), because of the existence of the words pork and
beef.

(2.7) (a) ?? Sam ate pig.
(b) 7?7 Sam ate cow.

(c) Sam ate lamb.

There is no clear dividing line between acceptable and unacceptable cases of
meaning shift. On some examples people’s opinions differ. Also, the range of
acceptability can be expanded considerably by placing questionable examples
in an appropriate context.

2.2.2 Where to Add the Shift Operator

We already mentioned once or twice that there are sometimes several possi-
bilities of applying the shift operator to predicates or parts of the semantic
representation. Is, for instance, in the case of I am parked out back the mean-
ing of I shifted to mean the speaker’s car or is the meaning of parked out back
shifted to denote a property of a person instead of a property of a vehicle?

Nunberg (1995) argues that in this case, it must be the predicate introduced
by the verb to which the shift operator is applied, because 2.8 (a) is possible,
while 2.8 (b) is not.

(2.8) (a) I am parked out back and have been waiting for 15 minutes.

(b) * I am parked out back and may not start.

If the meaning of I was shifted it should be possible to say more about the
speaker’s car in coordinate verb phrases, which is not possible as shown in
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2.8(b). On the other hand, it shouldn’t be possible in this case to conjoin
predicates describing the speaker as in 2.8 (a).

However, there are also examples for the other variant, where the meaning of
a common noun is shifted. In these cases, coordination with statements about
the original meaning of the noun is not possible, while information about
the transferred meaning can be conjoined. Nunberg gives by the following
example:

(2.9) (a) The ham sandwich at table 6 is getting impatient.
(b) * The ham sandwich at table 6 is getting impatient and stale.

(¢) The ham sandwich at table 6 has been calling the waiter for 5
minutes now and is getting really angry.

Examples involving quantification can also serve as tests. Consider the fol-
lowing sentence.

(2.10) Most British authors are widely read.

Now assume that there was only one British author who is famous all over the
world. All of his books are widely read. He was very productive and wrote
more books than all the other British authors taken together, i.e. more than
50% of all books by British authors are written by this one very famous
guy. In this situation 2.10 is not true. Now assume that instead of this one
very productive author, most of the other authors were very famous, though
only some of their books are widely known. In this case 2.10 can be uttered
felicitously. Summarizing, 2.10 becomes true, if most British authors are very
famous and each of them has written some books which are now widely read.
2.10 is not true, if most of the books by British authors are widely read and
all of these widely read books were written by only one author. Hence, the
quantification of most in sentence 2.10 is over British authors, i.e. the original
meaning, and not over books written by British authors. This indicates that
the shift operator was applied to the predicate introduced by the verb, and
not to the predicate introduced by the noun. The argumentation goes as
follows: If the meaning of the noun instead of the verb was shifted, most
would be applied to the shifted meaning, and therefore quantification would
have to be over the books instead of the authors.

Now consider the following sentence in the situations given below:
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(2.11) Most ham sandwiches complained about ...

Imagine that there are 10 guests in the restaurant who ordered one ham
sandwich each. Furthermore, there is this big, fat guy who ordered 20 ham
sandwiches. Sentence 2.11 is not true, if only the big, fat guy complained, but
it does turn out true, if all of the other ham sandwich orderers complained.
So in this example, most does quantify over the shifted meaning, namely
orderers of ham sandwiches, instead of over the original meaning, the ham
sandwiches. So things are just the other way round, which implies that here
the meaning of the noun and not of the verb was shifted.

Shifting the meaning of the verb seems to be the standard case, while shift-
ing common nouns appears to be restricted to use in special settings where
they are quite conventionalized, such as using dishes to refer to their order-
ers in restaurant settings, instruments to refer to their players in orchestra
environments, or diseases to refer to those who have them in hospitals.

2.2.3 What Shift Operator to Add

The opinions on how the appropriate shift operator is found differ consider-
ably. The main question is how much of this process is conventionalized and
can therefore be lexicalized and how much is driven by context or pragmatic
knowledge.

In examples of systematic polysemy like 2.2 the number of possibilities for
shifting the meaning of door is limited. The different meanings seem to be
actually contained in the word, and the sort conflict can be resolved by just
picking one of them. So, all a shift operator has to do in these cases is to
project the appropriate one of the lexically determined senses.

In the examples of metonymy in Section 2.1, some knowledge about the world
(for instance the knowledge that people often own cars) is needed to infer the
right shift operator. But there are also examples of metonymic meaning shifts
which exhibit a more conventionalized behavior. Consider e.g. the following
sentences:
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(2.12) (a) Mary began a book.
(b) Mary finished a book.

(c) Mary enjoyed a book.

Here, the missing information, namely what is done to the book, seems to
be determined mainly by the knowledge one has about books. Mary began
the book is understood as Mary began doing to the book what is normally
done to books, namely reading. Copestake and Lascarides (1998) note that,
in contrast, the examples in 2.13 are all odd.

(2.13) (a) * John began a chair. (sitting on)
(b) * John began a tunnel. (driving through)

(c) * John began a film. (watching)

This is interesting, because sitting on, driving through, or watching should be
connected with chair, tunnel, or film respectively just as closely as reading
is connected with book and it is not clear how the involved events or their
relationships to their respective objects differ!. This suggests that the ques-
tion which eventualities are available for metonymic meaning shifts cannot
be answered by pragmatics alone. Some kind of lexical licenses are needed,
which specify e.g. that books can be read, but not that tunnels can be driven
through.

In some cases these lexically determined or conventionalized meaning shifts
can be overridden by contextual information and world knowledge, though.
Consider the discourse given in 2.14 (a). Verspoor (1997) notes that it can
be continued by 2.14 (b) or 2.14 (c) but not by 2.14 (d).

(2.14) (a) My goat went nuts last night. He ate everything in his cage.

(a)
(b) He particularly enjoyed your book.
(c) He began on your book at 9pm.

(d) * He began your book at 9pm.

1See for example (Verspoor 1997), where restrictions of this type are examined.
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Verspoor (1997) argues that begin the book can only be shifted to begin reading
the book or to begin writing the book, while begin on the book is more flexible
and its interpretation actually depends on the context. Verspoor suggests
that this is due to the fact that verbs impose restrictions on their arguments
specifying which meaning shifts are possible. In the case of verbs like begin
the shift operator has to be available lexically via the nominal argument,
while in the case of begin on or enjoy anything that can be established by the
situation (and has the right sort) is permitted. Verspoor carried out corpus
studies of metonymic usages of different verbs which support her hypothesis.

2.3 Summary

We have seen different phenomena of lexical semantics which involve words
that have different meanings according to the context they appear in. Of
these phenomena we have distinguished systematic polysemy, metonymy, and
metaphor as cases of meaning shift (but we will not consider metaphor any
further in this thesis). We found that meaning shift is usually triggered by
a type or sort conflict which can be resolved by introducing an appropriate
operator, but pragmatic factors may also play a role. There are examples
where the shift operator has to be applied to the predicate introduced by
the verb and there are other examples where it has to be applied to the
predicate introduced by the noun. At first sight, the first case seems to
be more common. To find the right shift operator can be quite difficult.
For metonymy this usually depends heavily in world knowledge. However,
in some cases of metonymy lexical information also plays a role and shift
operators in polysemic examples are determined only by lexical information.
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Chapter 3

Approaches to Modeling
Meaning Shift

In this chapter we present four earlier approaches dealing with meaning shifts.
We will start by introducing Délling’s (1994) approach, which can be viewed
as a base for Egg’s (1999) proposal, as it, more explicitly than the others,
accounts for meaning shifts by inserting additional material into the semantic
representation. The other three were chosen because of the general difference
they show in explaining where the information the semantic representation is
augmented with comes from. They differ mainly in to what extent meaning
shift is thought to be driven by pragmatics and world knowledge in contrast
to lexical knowledge. On the end of the scale are approaches like the one by
Hobbs et al. (1993), which rely entirely on pragmatics and world knowledge.
The other extreme is represented by Pustejovsky’s (1995) approach, where
all variations of word meaning are predicted lexically. A middle course is
taken by Copestake, Briscoe, and Lascarides (Copestake and Lascarides 1998;
Copestake and Briscoe 1995). They allow for some interaction of lexical
semantic knowledge and world knowledge.

The main interest of all of these approaches is on how an appropriate shift
operator can be found. This is somewhat complementary to Egg (1999),
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who does not make any claims with respect to this problem, but is rather
interested in how augmentation of semantic representations with additional
material can be made possible in the first place. He stresses the point that
meaning shift can be viewed as a case of incomplete information which can be
treated very naturally by underspecification. He describes such a treatment
in an underspecification formalism based on tree descriptions. He assumes
some pragmatic component which delivers the disambiguating information,
but does not make explicit how such a component could look like.

I will therefore present the approaches, point out problems they might have
with respect to the question of What shift operator to add, and then compare
them with Egg’s approach with respect to the mechanisms that allow for
adding operators to the semantic representation.

3.1 Dolling

As said above, Dolling (1994) accounts for meaning shifts due to type or sort
conflicts by introducing operators into the semantic representation. These
operators are applied during the semantic construction process. He distin-
guishes polysemy and metonymy' and treats them slightly different. The
shift or rather specialization of meaning in cases of polysemy is effectuated
by lexical rules, which may also have syntactic and morphological effects. In
this way, he can explain count noun/mass noun alternations, as in Examples
3.1, as a case of polysemy.

(3.1) (a) The bread was round.
(b) John ate some bread.

Dolling assigns polysemic words a so-called hybrid sort. Hybrid sorts are
linguistic sorts that have no counterpart in the ontology. They correspond
to unions of ontological classes that are thought to be disjoint, e.g. apertures
and physical objects. Dolling’s motivation for hybrid sorts is to capture what
we called the polymorphous behavior of polysemic words in Chapter 2. By
using the operator SPEC' the meaning of the word can be specified to any
component of the hybrid sort.

'What he calls polysemy and metonymy corresponds to our concepts of systematic
polysemy and metonymy, respectively.
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The operation of meaning shift in cases of metonymy is not restricted to the
application to lexical categories. Furthermore, they never associated with
morpho-syntactic changes. Metonymic meaning shift is driven by knowledge
about the relations that hold between different classes of an ontology. This
general knowledge is encoded into a number of predefined shift operators.
Dolling assumes, for instance, a shift operator which, if applied to an in-
dividual of sort institution, yields a generalized quantifier that requires its
argument to be a predicate specifying a property of a group of people. He
also assumes an operator which transforms a predicate specifying a property
of a groups of people into one specifying a property of one person. Let’s call
these operators OP1 and O P2, respectively. Example 3.2 sketches, how they
are applied. I used the_boston_office and call to stand for the meaning of the
NP the Boston office and call and annotated all parts of the formula with
their semantic type and sorts.

(3.2) (a) The Boston office called.

(b) OP2<<e:group_of_people,t>,<e:person,t>>
(Opl<<e:group_0f_p60pl€,t>,t> (the—bOSton—Oﬁcicee:institution))
(call<e:per“son,t>)

3.1.1 Comments

Dolling only considers shifting the meaning of nouns. We saw in Chapter 2
that this is not adequate. Dolling’s approach has problems with accounting
for Example 3.3, for instance.

(3.3) T am parked out back and have been waiting for 15 minutes.

If the meaning of [ is shifted to refer to the speaker’s car, as it is necessary
for the combination with parked out back, have been waiting for 15 minutes,
which is a property of the speaker himself, does not fit anymore.

Dolling assumes further that the shift operators are introduced during se-
mantic construction. This requires that the information which determines
the type of shift operator to be introduced is available at that time. This is
not necessarily the case, when inferences are necessary to determine the shift
operator as in the following example.
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(3.4) My goat went nuts last night. He ate everything in his cage. He
particularly enjoyed your book.

In newer papers Délling introduces only underspecified operators during se-
mantic construction (cf. (D6lling 1997)). This allows to capture the influence
pragmatics and inferences on context and world knowledge may have. Note
also that underspecified operators are very similar to Egg’s additional dom-
inance edges.

3.2 Hobbs

Hobbs et al. (1993) are not primarily concerned with lexical semantics, but
rather suggest an integrated approach to various levels of linguistic process-
ing. A major point is handling incomplete information in natural language,
though, and a treatment of metonymy falls out as a by-product.

In their approach, interpreting natural language is viewed as the task of find-
ing the best explanation of why an utterance should be true. They propose
a form of abductive inference called weighted abduction for solving this task.
In weighted abduction costs are imposed on the assumption of literals and
the application of rules. The best explanation is then the one with the lowest
costs.

I will now sketch an example, which involves a case of metonymy, to illustrate
how abduction works. We will not go into the details of cost calculation, but
just give a general impression of how the missing information, the shift op-
erator, is found. In understanding the following sentence, a shift in meaning
is necessary to avoid a sort conflict due to the incompatible sorts of the sub-
ject the Boston office, namely institution, and the verb’s requirements on its
argument, namely human being.

(3.5) The Boston office called.

The logical form which Hobbs assumes for 3.5 looks like this:
JxIy3TzTe(call(e, x) A person(z) A rel(z,y) A office(y) A boston(z) A nn(z,y))

Note how the argument of call has to be a person. The sort conflict is
cushioned, though, by linking z only via rel(z,y) to the semantics of the
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subject, which is specified to be an office. rel(x,y) anticipates the places
where a meaning shift could occur. The still unspecified relation between the
two components of the compound noun is accounted for in a much similar
way: they are linked by nn(z,y).

Now assume the following database of background knowledge:

boston(b;) VyVz(in(y, z) = nn(z,y))
office(o,) VaVy(work_for(z,y) = rel(z,y))
in(o1,b1) Vy(office(y) = Jz(person(z) A work_for(z,y)))

Figure 3.1 illustrates an abductive proof of the logical form of 3.5, where only
call(e, x) is assumed. Everything else can be explained by facts or rules from
the database.

call (e,x)| A person(z) A rel(z,y) N office(y) A boston(z) N nn(z,y)

AN \

work _for(z,y) = rel(x,y) boston(b)
AN
office(y) = person(x) A work_for(z,y) in(y,z) = nn(z,y)

\

office(o1) in(o1,by)

Figure 3.1: Abductively Explaining The Boston office called

Costs can interact, so that an appropriate assignment of costs can explain
why the prefered readings of 3.6 (a) and 3.6 (b) differ.

(3.6) (a) Max began a book.

(b) Max, the famous author, began a book.

3.2.1 Comments

In (Hobbs et al. 1993) linguistic knowledge stemming from different sources
is treated as of the same kind (i.e. it may all be used in the same way to
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explain an utterance). However, in Chapter 2 we saw some evidence that
different types of information may effect meaning shift in different ways. It
is e.g. not obvious how the fact that in Example 3.7 (b) the world knowledge
that tunnels are for driving through may not be used to trigger a meaning
shift in this direction.

(3.7) (a) Mary began a book. (reading, writing)
(b) * Mary began a tunnel. (driving through)

As already mentioned above, the rel-relation is introduced during semantic
construction at those positions where a meaning shift may occur; it is thus
very similar to Egg’s dotted edges or Dolling’s underspecified shift operators.

3.3 Pustejovsky

The backbone of Pustejovsky’s (1995) approach to meaning shifts is the idea
of allowing lexical items to have a more complex semantic representation
than traditionally assumed. The important concepts he introduces are dot
objects and qualia roles.

3.3.1 Dot Objects

Dot objects are Pustejovsky’s idea to accomodate for the polymorphic be-
haviour of systematic polysems. He argues that nouns like door don’t denote
individuals but actually tuples of individuals, so-called dot objects, writ-
ten as = - y. All individuals in the denotation of door have the dotted sort
physical_object - aperture. It is left a bit obscure how exactly dot objects
relate to their components and how they fit into the ontology. Special oper-
ators, ¥; for the first component and Y, for the second, project one of the
constituent parts of the dot object.

The following example shows how he suggests to account for the fact that door
can be an argument of a predicate requiring an object of sort physical_object
as well as of a predicate requiring an object of sort aperture?®.

2Please note that this formalisation is taken directly from (Pustejovsky 1995). The
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(3.8) (a) Mary painted the door blue.
paint_blue(%; (the_door))(mary)

(b) Mary walked through the door.
walk_through(3s(the_door))(mary)

3.3.2 Qualia Roles

Qualia Roles describe selected aspects related to the meaning of a word. In
addition to the base meaning these qualia roles are available as an interpre-
tation of the corresponding word. Pustejovsky assumes four qualia roles to
be associated with every lexical item.

e The constitutive qualia role relates an object to its constituents,
i.e. describes its internal structure. For nowvel the constitutive quale
states that a novel is a narrative, while in the constitutive quale of
dictionary is something like list of words.

e The formal qualia role states what distinguishes an object from other
objects in its environment. Nowvel and dictionary are both distinguished
as tnformation bearing paper object by the formal qualia role.

e The telic qualia role specifies the purpose or function of an object.
While novels are usually read, dictionaries are usually consulted.

e The agentive qualia roles describes the origin of the object. The agen-
tive quale of novel is write and of dictionary compile.

The qualia structure Pustejovsky gives for the word book is presented below.
Note that book is, like door, of a dotted sort. In the qualia structure, reference
can be made to all components of the dot object as well as the dot object
itself, here: y, of type physobj, and z, of type info.

FORMAL hold(y.x)
TELIC read(e,w,x-y)
AGENTIVE  write(e',v,x-y)

application of the Y-operators to the_door is probably a bit unconventional, but I think
the idea is clear.
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The telic qualia role specifies that what is usually done to books is read-
ing them and the agentive qualia structure says that they are created by
somebody writing them. Note that both of these actions are done to the
dot object of type physobj - info. The formal qualia role specifies how the
two components of the dot object are related to each other: namely that the
physical object holds the information.

Pustejovsky suggests that in cases where the normal interpretation of book
would lead to a type or sort conflict, any of the qualia roles is also available
as a possible interpretation. They can be projected by the application of the
operators Qretic, Q agentive; and so on, as shown in the following example?:

(3.9) Mary began a book.
begin(Qr(a-book))(mary)
begin(Q a(a-book))(mary)

3.3.3 Comments

Pustejovsky’s approach limits meaning shifts to phenomena that can be ex-
plained lexically. He notes himself that this is not sufficient to account for
the whole range of meaning shifts in natural language semantics.

Similar as Délling does in (D6lling 1994), Pustejovsky (1995) introduces the
fully specified shift operators during semantic construction. That will lead
to the same problems as set out above and distinguishes his approach from
those that modularize the decisions on where to allow for a meaning shift and
what material to add by introducing a certain amount of underspecification.

3.4 Briscoe, Copestake, and Lascarides

Copestake and Briscoe (1995) adopt a somewhat extended and modified
version of Pustejovsky’s qualia structure. They distinguish two classes of
meaning shift phenomena. One of them, constructional polysemy, is mainly
accounted for by means of this qualia structure. For the other one, sense

3The same remarks as above hold for this formalization. Furthermore, according to
Markus Egg (personal communication), this formalization actually does not work out in
the intended way.
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extension, they assume lexical rules, which are applicable during parsing and
semantic construction.

They also make the interaction of the process which adds the shift operator
and semantic construction more precise.

Copestake and Lascarides (1998) then combine this approach with a mecha-
nism to model discourse structure, so that also cases of meaning shift which
go beyond conventionality can be captured.

3.4.1 Constructional Polysemy and Sense Extension

In cases of constructional polysemy the meaning associated with a lexical
item is specialized by contextual factors. This specialization is essentially the
selection of such a qualia role that the requirements of other lexical items are
met. Verbs, for example, can coerce their arguments into a different inter-
pretation by selecting one of the qualia roles. Whether verbs are coercing or
not is lexically specified. Begin, for instance, has four different forms which
differ in their subcategorization frame and their ability to coerce their argu-
ments into one of the qualia roles. In constructing a semantic representation
for Mary began a book, the entry retrieved from the lexicon for begin will be
specified to one of the coercing versions, which are selecting either the telic
or the agentive qualia role of the object as the object semantics.

In cases of sense extension derived senses are created from basic ones by
lexical rules. For instance, Copestake and Lascarides (1998) assume a lexical
rule for animal grinding, which creates a mass noun usually denoting meat
from a count noun denoting an animal. This rule is applied to the lexical
entry of rabbit to account for the syntactic and semantic behavior of rabbit
in Example 3.10. The rule is given in Figure 3.2.

(3.10) John eats rabbit regularly.

Copestake and Briscoe (1995) argue that there are several indications that
the distinction between sense extension and constructional polysemy is useful.
First, the two meanings which are related by sense extension are usually not
close enough for there to be a common core meaning which would justify
assuming just one lexical semantic structure for both of them. Second, cases
of sense extension are often accompanied by syntactic or morphological effects
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[ lez-count-noun 1 [lez-count-noun 1
ORTH [0 ORTH [0]
CAT noun-cat CAT noun-cat
SEM | PRED = |sem | PRED grind ([)
physical physical
QUALIA . QUALIA .
FORM  animal FORM edible_substance

Figure 3.2: Lexical Rule for Animal Grinding

(like e.g. making a mass noun out of a count noun). Following Pustejovsky
(1994) Copestake and Briscoe propose to use the possibility of co-predication
as an indicator for constructional polysemy. Examples 3.11 (a) and 3.11 (b),
where the parts in italics are argument to two different verbs, are examples
of co-predication.

(3.11) (a) Mary painted and walked through the door.

(b) The newspaper has been attacked by the opposition and pub-
licly burned by demonstrators.

Apparently, co-predication is more easily possible in cases of constructional
polysemy than in cases of sense extension. However, there are cases which
Copestake and Briscoe distinguished as constructional polysemy where co-
predication is not possible, and there are also cases where co-predication is
possible in combination with sense extension.

3.4.2 Interaction With Pragmatics

Now, what about unconventional cases of constructional polysemy, i.e. cases
where selection of a qualia role does not provide the appropriate shift oper-
ator? An earlier example for this is repeated in 3.12.

(3.12) My goat went nuts last night and ate everything in his cage. He
particularly enjoyed your book.
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The qualia role of book would yield He particularly enjoyed reading your book
or He particularly enjoyed writing your book as possible interpretations of the
second sentence of this discourse. This is not what is understood and also a
very implausible reading given the fact that goats are usually illiterate.

Copestake and Lascarides (1998) make use of default unification and a theory
of discourse structure to account for cases of unconventional constructional
polysemy. Very informally, the basic idea is to take the information which is
introduced into the semantic representation by qualia roles to be defeasible.
So, He particularly enjoyed your book is interpreted to mean He enjoyed doing
something to your book, which is reading if nothing speaks against it. Since
in this example the discourse structure as well as the knowledge that goats
usually don’t read do speak against this assumption it is overridden.

3.4.3 Comments

Copestake and Lascarides (1998) introduce a considerable amount of flexi-
bility into Pustejovsky’s analysis of polysemy and metonymy. This makes
possible a treatment of phenomena which cannot be explained strictly lexi-
cally. However, still not all cases of metonymy are captured. For instance, 1
am parked out back can be treated neither by constructional polysemy nor by
sense extension. Simply applying a lexical rule is not possible, because of the
acceptability of I am parked out back and have been waiting for 15 minutes.
It also seems implausible to include reference to a vehicle in the qualia struc-
ture of a person, which would be necessary for a treatment by constructional
polysemy. This means that semantic construction would probably fail due to
a sort conflict. It seems that a more liberal interaction of pragmatics must
be allowed.

3.5 Summary

This chapter has presented several accounts of meaning shift which rely on
different sources of information (lexical, sortal, pragmatic) to find an ap-
propriate shift operator. We briefly presented the main mechanisms which
allow for the addition of a shift operator to the semantic representation and
which guide the search for an appropriate operator in a given context. The
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discussion in this and the preceding chapter made clear that any type of
knowledge and even an interaction between different types may play a role
in determining the shift operator. These different types of information are
not necessarily available at the same stage of linguistic processing, so that it
is not possible to restrict operations of meaning shift to e.g. the semantic con-
struction process. This calls for an approach which provides a representation
which is flexible enough to allow for different types of information to con-
tribute to the semantic representation at any time in the course of linguistic
processing. Copestake and Lascarides (1998) try to account for the influence
pragmatics may have by treating certain information as defeasible default
information which can be overridden by pragmatic constraints. Hobbs et al.
(1993) and Délling (1997) delay the decision on what material to add until
all information necessary is available and can be evaluated simultaneously
by introducing underspecification at all places where the addition of a shift
operator is possible. As already mentioned several times, this is very similar
to Egg’s (1999) approach. He proposes a constraint based underspecified
description of meaning shifts which can be made more specific at any time
by simply adding further constraints.
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Chapter 4

Semantic Underspecification
With Tree Descriptions

In this chapter we will define the underspecification formalism that we will
work with in the rest of this thesis. It exploits the idea that logical formulas,
in particular A-terms, can be viewed as trees. These trees constitute the
object language of our underspecification formalism. As meta language we
use a constraint language called Constraint Language for Lambda Structures
(CLLS) (Koller 1999; Egg et al. 1998) which allows us to describe sets of
trees and thus allows for an underspecified description of logical formulas.
The main underspecification instrument are dominance constraints.

Figure 4.1 illustrates the levels of representation that are important for CLLS.
As said above, CLLS is a constraint language. CLLS constraints describe A-
structures. A-structures are tree-like and represent A-terms. We will talk
about A-structures in Section 4.1. CLLS constraints can be represented by
constraint graphs. In fact, we will normally present constraints as graphs
throughout this thesis, because it makes them much easier to read. The
language of CLLS and the relation between constraints and the graphical
representation will be discussed in Section 4.2.

Finally, we will see some example applications and a syntax/semantics inter-
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Figure 4.1: Levels of Representation in CLLS

face which derives underspecified descriptions in the presented formalism in
Sections 4.3 and 4.4 respectively.

4.1 M-terms as Trees: the Object Language

A-terms are widely used for representing natural language semantics. They
can be represented by tree-like structures called A-structures. A A-term and
its corresponding A-structure are given in Figure 4.2.

:EI\‘
woman var

Figure 4.2: A A-term and the corresponding A-structure

Az.woman(x)

Variable binding and functional application are made explicit in the A-structure
by the dashed arrow and the label @, respectively. Linking variables to their
binders explicitly instead of via names results in a stable binding relation,
which can never be undone (accidentally). So, a A-structure corresponds to
a unique class of A-terms modulo a-equality.

Since A-structures are very close to trees, we will first define tree structures
and then extend this definition.
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4.1.1 Tree Structures

A tree structure consists of a tree domain, which defines the nodes and their
position in the tree, and a labeling function, which assigns a label to every
node.

A node is a word m € N*, where N is the set of positive integers and N* is
the set of words over N. 1, 123 or 111, for instance, may be nodes in a tree.
We write e for the empty word, corresponding to the root node. Intuitively,
a tree can now be described by a set of nodes as follows: € is the root node,
1 is the first, the left most, daughter of the root, 2 is the second daughter of
the root, 21 is the left most daughter of the second daughter of the root, and
so forth. We write wz’ for the concatenation of 7 € N* and n’ € N* and we
say that 7 is a prefiz of 7’ if there is a word 7" such that 77" = 7n’. ni is the
left sibingof mjift j =1+ n,for1 <n<j—1.

A tree domain A is a nonempty subset of N*, which is closed under the prefix
and the left-sibling relations. Figure 4.3 gives an example of a tree structure
and its tree domain.

lam e € A= {6,1,11,12}
woman 1 var-e 12

Figure 4.3: A Tree Structure and its Tree Domain

When talking about trees, we will usually say that a node m dominates a
node 7' (w<*n') iff 7 is a prefix of 7’. Furthermore, we will say that nodes
m and 7y are disjoint with branching point my, written as

7T1J_7T2 at 7o,

iff there are words 7] and 7} and different positive integers 7, k such that
m = meim; and my = moknwh. In Figure 4.3, for example, 11 and 12 are
disjoint with branching point 1, 11 L 12 at 1.

Furthermore, we assume a signature ¥ = {@, lam, var,woman, ...} of node
labels. Each of these labels is assigned a fixed arity by an arity function ar :
> — Ny, where Ny is the set of nonnegative integers. This arity determines
the number of daughters a node with a given label has. For example, ar(Q) =
2.

43



Definition 1 (Tree Structure). A tree structure is a tuple (A, o) consist-
ing of a finite tree domain A and a total labeling function o : A — % such
that forallm € A and i € N:

mieA & 1<i<ar(o(m)).

The labeling function of the tree structure in Figure 4.3 can be given by
o(e) =lam,o(l) =@, 0(11) = woman, c(12) = var.

4.1.2 M-Structures

A M-structure is a tree structure extended with a partial A binding function.

Definition 2 (\-Structure). A A-structure is a triple (A, 0, \) consisting
of a tree structure (A, o) and a partial A\-binding function X\ : A ~» A which
satisfies for all w, 7' € A:

if A\(7) = ' then o(m) = var, o(r') = lam,

and 7'<*1
So the A-structure in Figure 4.2 its tree domain, {¢, 1,11, 12}, the A-binding
function, given by A(12) = ¢, and the labeling function, o(¢) = lam, (1) = @,
o(11) = woman, and o(12) = var.

Note that this definition allows for free variables, which is important for some
of the proofs in the next chapter to work out.

4.2 Graphs as Tree Descriptions: the Meta-
Language

We will now define a fragment of CLLS, the Constraint Language for Lambda
Structures. CLLS is a language that describes sets of A-structures by stating
constraints on the nodes of the tree domain. The fragment of CLLS we are
interested in consists of labeling, dominance, A-binding, and inequality con-
straints. Full CLLS additionally provides parallelism constraints, for mod-
eling ellipsis, and a linking relation between nodes, which makes anaphoric
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binding explicit. Full CLLS allows for an integrated treatment of the in-
teraction of scope ambiguity, ellipsis, and anaphora (Egg et al. 1998; Xu
1998).

We will start by defining the syntax and semantics of CLLS. Afterwards we
will introduce some further concepts which will become important later.

4.2.1 Syntax and Semantics of CLLS

Assuming an infinite set of (node) variables ranged over by X,Y,Z, the
syntax of the fragment of CLLS we are going to use is the following:

v == X:if(Xy,...,X,) (f € X and ar(f) =n)
| X<Y

| AMX)=Y

XY

| X LY at{Z,...,Z)}

|

oA

We will call the set of variables of a constraint ¢ V(p) and we will say that
©'ingp if all atomic constraints of ¢’ are also contained in .

A wvariable assignment into a \-structure M is a total function from the set
of variables to the domain of M. A pair (M, ) of a A-structure M and a
variable assignment o into M satisfies a constraint ¢ iff it satisfies all of its
atomic constraints in the following way:

X:f(Xyq,...,X,) is satisfied iff o(a(X)) = f and a(X)i = a(X;) for 1 <
1 < n.

X<*Y is satisfied iff a(X)<*a(Y).
AX) =Y is satisfied iff A(a(X)) = a(Y).
X#Y is satisfied iff a(X)#a(Y).

X 1LY at{Z,...,Z,} is satisfied iff there is an i, 1 < i < n, such that
a(X) LaY) at a(Z;).
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The generalized version of disjointness with a branching point we have defined
here will be handy in some of the proofs of the next section. If the branching

point is not important we will also write X L Y, meaning that there is a 7
such that a(X) L o(Y) at 7 holds.

A pair (M, a) which satisfies a constraint ¢ is also called a solution of ¢,
and M a model of ¢. We write ¢ = ¢’ and say that ¢ entails ¢' if every
solution of ¢ is a solution of ¢'. The notions of solutions and entailment can
be lifted to first-order formulas built from constraints as usual.

For illustration, have a look at Figure 4.4, which presents two only slightly
different (lightgray area) CLLS constraints and some A-structures that satisfy
them.

Xi:lam(X3) A

X2:0Q(X5, Xa) A is model of lam
X3:woman A Q

X, :var A ¢ woman var
MXy) = X, ©

Xi:lam(X3) A |

Xo<* X, A is model of am

Xyvar A Q

AMXa) = X, man var

Figure 4.4: Constraints Describe Sets of A-Structures

We will call a solution constructive if for every node 7 in the domain of M
there exists a variable X € V() such that a(X) =7 and X:f(...) in ¢ for
some label f in 3. This means that constructive solutions are built only from
material present in the description. Every labeled node in the solution must
correspond to a labeling constraint in ¢ and every node must be denoted by
an element of V(¢). The model given for the upper constraint in Figure 4.4
is a constructive solution, while the solutions given for the lower constraint
are not. For linguistic applications, we are usually interested in constructive
solutions for the constraints derived by semantic construction, e.g. when
resolving scope ambiguities. There are some phenomena, however, which
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cannot be modeled when assuming only constructive solutions. Meaning
shift is one of them, since it may require new material to be added to the
semantic representation derived by semantic construction.

4.2.2 Normal Constraints and Constraint Graphs

Another restriction which is reasonable to make for linguistic applications is
that all constraints we have to deal with are normal, i.e. two labeled variables
must denote distinct nodes:

Definition 3 (Normal Constraints). A constraint ¢ is normal if for each
two labeling constraints X:f(Xy,...,X,) in ¢ and Y:g(Y1,...,Y,) in ¢,
where X and Y are different variables, it holds that X#Y in ¢ (even if
f=9).

Normality ensures that semantic material introduced by different occurrences
of the same substring in the utterance will never be unified. For instance,
in the sentence A cat chases a cat both occurrences of a cat introduce the
same material to the semantic representation. Without the restriction to
normality these two subconstraints can be mapped to the same part of a
solution, thereby yielding a semantic representation corresponding to A cat
chases itself, which clearly is something different.

Since constraints easily become very hard to read, we will often draw them
as graphs. Nodes in these graphs stand for variables in the constraint, which
are variables for nodes of a tree. They should not be confused with nodes in
A-structures, which are nodes of a tree structure. In a solution, two different
nodes of a constraint graph, which belongs to the meta-language level of
representation, may be mapped to just one node in a A-structure, which is
at the object-language level of representation. The constraints in Figure 4.4,
for instance, can be represented by the graphs in Figure 4.5.

Iam )(1 |am I X]_
-/X@/I\XK‘ "

woman var-e X :
3 4 var e X;

Figure 4.5: Constraint Graphs
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We will take graphs to always represent normal constraints, which means
that rigid fragments, i.e. parts which are connected by solid edges only, may
not overlap.

4.2.3 Fragments

This takes us to the next useful concept: fragments. A fragment in a con-
straint graph ¢ is a subset of the variables of ¢ such that they are connected
by labeling constraints.

Definition 4 (Fragments). Let ¢ be a normal CLLS constraint.

1. Let two variables X,Y € V(p) be connected if X:f(...Y ...) in ¢ or
if there is a third variable Z € V(¢) such that X and Z are connected
and Z:f(...Y ...) in ¢.

2. A (rigid) fragment of ¢ is a subset F' C V(p) of variables that are
pairwise connected in ¢. A node X € F'is called a leaf of a fragment

F if F contains no variable Y such that there is a labeling constraint
X:f(...Y...)in . A holeis a leaf which is not labeled at all.

Fragments are “tree-like”. Every fragment F' has the following properties:

1. For each two variable in the fragment it holds that either one dominates
the other or they are disjoint (cf. Lemma 5).

2. F' has a unique root, i.e. contains a variable that must dominate all
other members of F' in any solution (cf. Lemma 6).

3. In particular, all leaves of F' must always denote pairwise disjoint nodes
(cf. Lemma 7).

Lemma 5. Let ¢ be a normal constraint, let F' be a fragment in ¢, let X, Y
be different variables in F, and let (M, «) be a solution of p. Then there is
a W € F such that the following entailment holds:

PEXIYVYTXVX LY at {W}.
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Lemma 6. Let ¢ be a normal constraint, let F' be a fragment in ¢, and let
(M, ) be a solution of . Then F contains exactly one variable R such that

v = /\ R<*X.

XeF

Lemma 7. Let ¢ be a normal constraint, let F' be a fragment in @, and let
X, Y be different leaves of F'. Then there is a variable W € F such that

e EXLY at {W}.

The proofs of Lemmas 5 — 7 can be found in Section A.1 of the appendix.

4.3 Application to Scope Ambiguity

In the introduction we saw an example of scope ambiguity, which is repeated
here as Example 4.1.

(4.1) Every man loves a woman.

We will now demonstrate by means of this example, what an underspecified
treatment of scope ambiguities looks like in CLLS. The A-structures corre-
sponding to the two readings of 4.1 are displayed on the left hand side of
Figure 4.6. A constraint graph describing exactly these two A-structures
(when considering only constructive solutions) is given on the right.

We can distinguish three rigid fragments in the constraint graph, namely
the two quantifiers and the verbal nucleus. To make it easier to talk about
these fragments, we have marked them with Roman numbers. Both of the
fragments corresponding to the quantifiers, fragments I and I, have a hole
which dominates the root of the third fragment, but the constraint contains
no information on the position of these two fragments with respect to each
other. This is what accounts for the scope ambiguity. In finding (construc-
tive) solutions for this constraint, the given fragments have to be arranged
into a tree. Since upward branching is not allowed in trees and since in a
normal constraint overlapping of fragments (except of holes with roots) is
not allowed, the only way to achieve this is to identify node X3 with node
X5 and node X4 with Xy, or node X, with node X5 and node X3 with X5.
This yields exactly the two scope readings of this sentence.
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every

Q@ eX Q X,

Q lam Q lam
a woman ever man
X, Y . X,
Q o X5
Q var
love var

Figure 4.6: Scope Ambiguities in CLLS

4.4 Semantic Construction

Now, we will present a syntax/semantics interface which derives underspec-
ified semantic representations in the form of CLLS constraints.

For purposes of the presentation, we will consider only a small grammar
fragment here. But it should be a simple matter to extend it to cover other
phenomena as well. In fact, we have implemented an HPSG grammar which
produces essentially the same constraints and has a much wider coverage.
The grammar fragment is given in Figure 4.7 by a set of simple context-free
grammar rules (where IV stands for intransitive verb, TV for transitive verb,
CV for control verb, and Lex is a relation between words W and lexical
categories o € {Det, N, IV, TV, CV,Adv} which represents the lexicon).

The syntax/semantics interface of the grammar associates subconstraints
with each node v of the parse tree. The contributions of these are then
conjoined. The rules by which subconstraints are introduced are presented
in Figure 4.8. We take [,.p @ R] to mean that node v in the syntax tree
is labeled with P, and its two daughter nodes v1 and v2 are labeled with
@ and R, respectively. (Remember that we represent trees, also the parse
tree, by a tree domain A C N* and a labeling function o:A — ¥; cf. Section
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(al) S — NP VP (a6) VP — VP Adv

(a2) NP — Det N (a7) VP —» IV
(a3) N > N (a8) VP — TV NP
(a4) N —» N PP (a9) VP — CV VP
(a5) PP— P NP (al0) o — W

if (W,«a) € Lex

Figure 4.7: The Grammar

4.1.1.Hence, v,v1,v2 € N*) One variable of the subconstraint associated with
node v is specially distinguished. We will call it X,. X, is related to X,
and X, via the CLLS constraint.

Some other nodes may also be given a special name, e.g. X °P¢ in the
contribution of rule (bl). This is to make it easier to refer to them later on.
Furthermore, it clarifies their function in the final constraint; in the example,
X°°P¢ is intuitively the scope of the quantifier represented by the NP.

Figure 4.8 doesn’t completely specify all the necessary A-binding constraints.
This is because variable binding requires words to have access to information
about their arguments. Within a a context free grammar this information is
difficult to maintain, but in any “serious” grammar formalism (HPSG, LFQG)
it doesn’t pose a problem. For the rules (b7), (b8), and (b9), we therefore
assume the availability of additional information about the subjects of the
verbs considered. Suppose that v is a VP node in the parse tree and v/ is the
NP node that represents the subject, then we add the following A-binding
constraint:
MX) = X

Similarly for rule (b5), if ¢/ is the NP node modified by the PP at v then we
add the following A-binding constraint:

)\(Xargl) — Xrestr
v v!
Now, let’s look at how semantic construction works. Figure 4.9 gives the
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s NP VP] = : (oo VP Ady] 2 % N
: v2 vl

:. XU2

[ IV] (g) .«@.\Xu\' argl
[ NP Det m (22}) % X Xrestl:vp vt ver Xul
v vl v2y <y

[u:ﬁ N] = XI/aXul N

e Ty, e W W) e X, X,
[op PNP] (&) *._ where a € {Det, N, IV, TV, CV, Adv},

(W, ) € Lex, and §(W) is the
semantic content of W

Figure 4.8: The syntax/semantics interface
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parse tree for our well-known example sentence Every man loves a woman
on the left hand side and the semantic representation derived by our syn-
tax/semantics interface on the right hand side. The dotted arrows go from a
node v in the parse tree to node X, in the constraint graph, indicating which
part of the constraint is the semantic contribution of node v. The dotted
arrows are labeled with the rules that were used.

NP ...... VP ............ { 7 (1‘

N lam Q lam
/ \ TV/ \NP every‘ man- a &~ woman ‘

IOVG‘b ----- Pet - N
| (b3)
man .. a ... N" love
(b10)

womarn

Figure 4.9: Every man loves a woman: Semantic Construction

4.5 Summary

This chapter has presented the Constraint Language for Lambda Structures
(CLLS), which is a tree description language based on dominance constraints.
There are four levels of representation which are important when working
with CLLS: Constraints describe sets of A-structures. A-structures represent
A-terms and constraints can be represented as constraint graphs. We demon-
strated the application of CLLS to linguistic phenomena of semantic ambi-
guity. We furthermore developed a syntax/semantics interface which derives
underspecified semantic representations in the form of CLLS constraints.
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Chapter 5

Modeling Meaning Shifts in an
Underspecification Framework

In this chapter, we will motivate and present Egg’s (1999) account of meaning
shifts. By making use of the underspecification techniques introduced in the
previous chapter, he can provide a monotonic treatment of meaning shifts.
We will adapt the syntax/semantics interface given in the last chapter to
his account. We will see that the general strategy Egg is using can lead
to overgeneration. However, in the application to meaning shifts it never
does. We will prove this after having developed some techniques for drawing
inferences about dominance and disjointness which powerfully support the
type of inferences we are interested in.

The proof of the main result (Theorem 18) will actually be given in this
chapter. For all other proofs, we refer the reader to the appendix.
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5.1 Relaxing Underspecified Semantic Rep-
resentations

Recall from the introduction that we want to model meaning shifts by a
process which adds information, the shifting operator, to a semantic rep-
resentation. In terms of tree descriptions as semantic representations, the
problem presents itself as depicted in Figure 5.1. On the left hand, we have
the semantic representation the syntax/semantics interface presented in the
previous chapter would derive for the sentence I am parked out back. On
the right hand, we have a representation of the intended meaning. The shift
operator was inserted into the semantic representation by some process of
tree adjunction at node X.

lam

L

.ﬂ\ adjoin
pob speake e
Q
'9¢<:va\ro pob var
car_of var

(a) (b)

Figure 5.1: Meaning Shift by Tree Adjunction

We saw in Chapter 2 that which information is added and if information is
added depends on lexical as well as contextual factors. Lexical information
can be accessed during the process of semantic construction, but context,
world, or pragmatic knowledge is usually not yet available at this stage. This
implies that a final decision on a specific shift operator can only be made
after semantic construction, when all of the sources of information needed
can be accessed. So, phenomena of meaning shift can be seen as cases of
incomplete information, i.e. not all of the information needed is provided
by purely linguistic knowledge. With the perspective on underspecification
put forward in Section 1.2 of the introduction this suggests a treatment by
underspecification, which is what Egg proposes.

In Egg’s framework semantic construction derives an underspecified repre-
sentation which contains no sort conflict and describes all potential meaning
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shifts as well as the basic readings involving no meaning shifts. The key idea
is to have semantic construction derive semantic representations which are
relazed, i.e. made less specific by introducing an additional dominance edge,
at the site where the shift operator is to be introduced. The semantic rep-
resentation of I am parked out back will look like displayed in Figure 5.2 (a).

g Spea ke instantiate

pob e X!
}%:va\r- pob var
car_of var
(a) (b)

Figure 5.2: Meaning Shift by Instantiation of Gaps

The sort conflict contained in the unrelaxed version is cushioned here by the
additional dominance edge. We will call this dominance edge relazation gap
since it functions like a gap in the semantic representation by allowing for
material to go between the nodes X* and X'. In particular, the shift operator
can be go into the relaxation gap. Hence, by this method the actual process
of meaning shift boils down to instantiation of gaps. We will call X* and X'
the upper and the lower boundary of the relaxation gap, respectively.

We saw in Chapter 2 that, in case of the phenomena of meaning shift we are
interested in here, it is usually the predicate introduced by the verb to which
the shift operator is introduced. For the time being, we will only consider
this type of meaning shift. As said above, we want semantic construction to
derive only relaxed semantic representations. In order to achieve this, the
process of relaxation is compiled into the syntax/semantics interface, which
means that rule (b10) of the interface presented in the previous chapter is
replaced by rules (b10’) and (b10”) shown in Figure 5.3.

The syntax/semantics interface controls, where the potential application sites
for shift operators are, and it derives only constraints which are relaxed at
these positions. In case no meaning shift is necessary, the gap can just be
closed; otherwise it provides space for introducing new material, like shift
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b10’ " o XV
o W B W) 0 X, X, o W] 127 s
S(W) o X!
Where: Where:
a € {Det, N, Adv}, (W, ) € Lex, o € {1V, TV,cv}, (W, a) € Lex,
and 6(W) is the semantic content and 6(W) is the semantic content
of W of W

Figure 5.3: Revised Syntax/Semantics Interface

operators. Note, that this adding of new material is a non-destructive opera-
tion; new atomic constraints are simply added to the semantic representation.
This is where Egg’s approach differs from an approach to meaning shift by
tree adjunction.

5.1.1 An Integrated Treatment of Meaning Shifts and
Scope Ambiguity

Using general underspecification techniques to model meaning shifts makes
an integration into a general underspecification formalism suggest itself. And
in fact, it is possible to describe sentences involving scope ambiguities in
addition to meaning shifts, as in the following example.

(5.1) Every driver of a mafia boss is parked out back.

The corresponding semantic representation as derived by the revised version
of our syntax/semantics interface is given in Figure 5.4.

In reading the constraint graph in Figure 5.4, it is first of all helpful to
identify its various fragments. For convenience, 1 have labeled them with
Roman numbers.

The way in which fragments I, 11, and I are connected accounts for the
scope ambiguity between the two quantifiers a mafia boss (represented by
fragment I) and every driver (represented by fragment I7). We have ex-
pressed that they both have to outscope the semantic contribution of of
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I

lam
mafia_bos every
s driver var
o (111 e IV
var out_back
of var u var

be_parked o X! V.

Figure 5.4: Underspecified Representation of a Potential Meaning Shift

(fragment I17), but we haven’t said in what relative position they are to
each other. A meaning shift has to account for the fact that the sentence is
understood to mean that the vehicles of the mafia bosses are parked out back
and not the persons themselves. This can be modeled by filling an appropri-
ate shift operator into the gap left open by the dominance edge X*<1*X! in
the description of the verb semantics.

5.1.2 A Problem?

Locally, the relaxation site in Figure 5.4 looks just the same as in the sim-
ple example above (Figure 5.2 (a)). And intuitively, it should be treated in
the same way. This would mean that adding the shift operator was possible
before enumeration of scope readings and that these phenomena weren’t af-
fected at all by their co-occurrence. But is it always safe to just ignore other
ambiguities while adding the shift operator? The following discussion will
show that we really flushed a potential problem here.

The rather abstract example given in Figure 5.5 illustrates the problematic
effect. 5.5(b) is a result of relaxing 5.5(a) and 5.5(c) is a possible solution of
5.5(b). Observe that in this solution the fragment f(e) has slipped into the
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{ ] .. g
fez g
[z g | I f4x.7
relax solve
PP G PR
a e XY : aeY
aeY

Figure 5.5: Problem

newly opened gap. The relaxed constraint has a solution which differs from
the solutions for its unrelaxed counterpart not only at the relaxation site,
but in the general structure, i.e. the fragments of the relaxed constraint can
be arranged in a way which is not possible in the case of its unrelaxed coun-
terpart. The solution in Figure 5.5(c) is possible because of an interaction
of the relaxation site with other dominance edges, which, as argued above,
should never happen.

A closer look at the dominance edges in our graphs will help us understand
where the problem stems from. We notice that we have two kinds of domi-
nance edges in our graph which serve fundamentally different purposes. In
the case of scope ambiguities, the gaps are only there so that the mate-
rial already present in the semantic representation can be arranged into tree
structures in different ways. In the case of meaning shifts on the other hand,
we introduced them to make room for the shift operator. Material totally
new to the semantic representation, and only this, is to be filled in. In Fig-
ure 5.5 the “purpose” of the relaxation gap was violated since old material,
i.e. material already present in the semantic representation, was filled into
the gap. Figure 5.5 is therefore called an unintended solution. Solutions
where no old material has slipped into the relaxation site are called intended
solutions.

The constraint language does not give us enough expressive power to prevent
old material to slip into relaxation gaps, because it doesn’t provide negation
or disjunction of constraints. This doesn’t matter, though, since there actu-
ally is a much better way out of this problem. We can prove that our revised
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syntax/semantics interface never gives rise to the problematic effect described
above. The structure of any constraint generated by this syntax/semantics
interface is such that all of its solutions are intended; no old material can
ever slip into any of the relaxation gaps. The advantage is that this proof
only has to be done once. Then we never have to worry about the problem
again and can safely relax the semantic representations to model meaning
shift. We will work out this proof in the rest of the chapter.

5.2 Safety of Relaxation

The goal of this section is to find a general criterion which tells us for a
certain relaxation of a semantic representation whether it can happen that
old material slips into the relaxation gap. We will start by defining intended
solutions. Then we will state a Safety Criterion which, if satisfied by a con-
straint, ensures that all solutions of that constraint are intended. We will
introduce chains of fragments which are subconstraints with a certain struc-
ture that powerfully support the proof of satisfiedness of the Safety Criterion.
Finally, we will prove that all constraints derived by our syntax/semantics
interface satisfy the Safety Criterion.

5.2.1 Intended Solutions

As said in the previous section, intended solutions are solutions of the con-
straint in which there is no old material at the position where the gap was.
Consider Figure 5.6 for illustration. The constraint graph to the left gets
relaxed at node X: node X is replaced by two new nodes X* and X! which
are connected by a dominance edge. This introduces the relaxation gap. On
the right is a solution of the relaxed constraint. The gap was filled, so that
there is now material which is dominated by X%, but not by X'. Note that
in the example some of this material is old material, node Y for instance.
Hence, this is an unintended solution.

Now, how can we tell that old material has slipped into the gap? Intuitively,
all solutions of relaxed graphs should differ from solutions of their unrelaxed
counterparts only at the relaxation site. That is, if we cut out that part of the
solution where the relaxation gap used to be (namely everything dominated
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Figure 5.6: Old Material Slipped into a gap

by X* but not by X!), then we should arrive at a solution for the unrelaxed
graph. However, if old material is in this area, as it is in Figure 5.6, it
will disappear. Hence the result of this cutting out operation, which we will
call projection cannot be a solution of the unrelaxed graph, because material
present in the constraint is missing in this resulting tree.

So, intended solutions of a relaxed graph are those solutions of this graph
which yield a solution of its unrelaxed counterpart when the material which
was filled into the relaxation gap is cut out. This relationship between con-
straints, their relaxations, and their solutions is depicted by Figure 5.7.

relax at X
2

solve j l solve

project

XU\ | xu

Figure 5.7: Intended Solutions

In order to arrive at a formal definition of intended solution we have to define
the operations of relaxation and projection.
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Let’s begin with the (formal) definition of relaxation of a constraint at a
certain node X. The idea is that X is split in two: an upper variable X* and
a lower variable X'. Every atomic constraint that “refers to X from above”
refers to X* in the relaxed constraint and every atomic constraint that “refers
to X from below” refers to X!. The atomic constraints that don’t refer to X
are not affected. We will now make more precise what “referring to X from
above/below” means.

Let ¢ be a normal constraint, X € V(p) a variable, and eq,(X) = {Y €
V(e) | ¢ E X<*Y ANY<* X} the set of variables which must be equal to X.
In a satisfiable normal constraint, we can compute eq(p(X ) syntactically by
reflexivity and transitivity inferences about dominance constraints.

We partition the set of atomic constraints in ¢ into three parts, depending
on how they refer to eq,(X). The set Ux(y) contains all atomic constraints
in ¢ that relate a Z € eq,(X) to a variable “above”, i.e. that are of one of
the following forms (for some f,Y,n>1,7y,...,2,):

Yif(...,2,...), Y<*Z,
YLZat{Z,...,2.}YZ4Y, ot Y#Z

The set Lx () contains all atomic constraints in ¢ that relate a Z € eq,,(X)
to some variable “below”, i.e. which are of the forms:

Z:f(...,Y,...), Z<'Y,
AY)=2,M2)=Y,
Z#£Y, or Y#Z

The set Ox(¢) contains those atomic constraints of ¢ in which no variable
of eq,,(X) occurs.

In the following definition, we write [Y/V)] for the substitution that maps all
variables in the variable set V to the variable Y.

Definition 8 (Relaxation). Let ¢ be a normal constraint, X a variable
in V(¢) such that a labeling constraint X:f(...) in ¢, and X*, X! variables
fresh for . Then the relazation Rx(¢) of a constraint ¢ at the variable X
is defined as the conjunction

X< XY A N{p[X"/eq,(X)] | e Ux(p)}
AN plX eq (X)) | u e Lx(e)}
ANNu | peOx(p)}.
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Lemma 9. The relazation Rx(p) of a normal constraint ¢ at X is normal.

Next, we will define the projection operation. This is the operation that
“cuts” a part out of a A-structure.

Definition 10 (Projection). Let M be a A-structure (A, o, ), and let
m,<*m be nodes in A. Let A;y C N* be the subset of A without the tree
fragment between 7, and m;:

AT ={r € A | if 7, <"1 then m<*n}
The projection p : AT* — N is the function which satisfies for all paths
™ e A

!

T if not m,<*7
w7 =m7a

Furthermore, note that p is one-to-one and that p(AZ;ﬂ) is a tree domain.
The projection M7 of the A-structure M at nodes m,,m is the A-structure
(p(ATx),0', \') such that for all m € AZ»:

o'(p(m)) = o(m) |
N p(m) {p()\(w)) if A(m) € AT

undefined otherwise.

Let ¢ be a constraint and (M, «) a solution of this constraint. The projection
o' of o at nodes 7, 7 is defined iff

a(Y) e AT» U{m,} for all Y € V(p).
In this case, it is defined by

() = {p(a(Y)) if a(Y) € A

Ty otherwise

for all Y € V(p).

Now we can give a formal definition of intended solutions. It says that a
pair of a A-structure and a variable assignment is an intended solution of a
relaxed constraint iff cutting out the relaxation site yields a solution of the
unrelaxed counterpart.
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Definition 11 (Intended Solutions). Let ¢ be a constraint, X a variable
and Rx(¢) the relaxation of ¢ at X. A pair (M, ) is called an intended
solution of Rx(p) iff

1. the projection o of a at a(X"), a(X!) is defined;

2. (Mz(xu)’ o/ U{Y = p(a(XY)) | YV € eq,(X)}) satisfies ¢.

(X"

Lemma 12. An intended solution of Rx(p) is indeed a solution of Rx ().

5.2.2 A Safety Criterion

Given a solution for a relaxed constraint we are now able to decide whether
it is intended, i.e. whether it is one where material already present in the
constraint has slipped into the gap. We will call a relaxation safe if it doesn’t
have any solution where this is the case.

Definition 13 (Safety). A constraint ¢ is called safe at X iff all solutions
of its relaxation Rx () at X are intended.

By this definition, testing whether a certain relaxation is safe would mean
showing for each of its solutions that it is intended. Since a constraint may
have a lot of solutions, this is not a good option. We would like a criterion
that can be stated with reference to only the underspecified semantic repre-
sentation. Here comes such a criterion, which reduces the expensive testing
of all solutions to an entailment problem:

Proposition 14 (Safety Criterion). Let ¢ be a constraint, X a variable
in @, and ¢' the relazation of ¢ at X. Then ¢ is safe for relaxation at X if
the following entailment s true:
oE N\ YsxXvY LX"V XY,
YeV(p)\{X}
Intuitively it is clear why the Safety Criterion should hold: If a node is

above, below, or disjoint to the relaxation gap (this is what the disjunction
expresses), then, of course, it can’t be in the gap.

We will say a variable Y € V() \ {X} complies with the Safety Criterion iff
o EY<IXUVY LX"VX'qYY.
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Note, that the Safety Criterion does not state an “if-and-only-if” relation.
This means that it only filters out a subset of the relaxed constraints which
have only intended solutions. It is still strong enough for our purposes,
though. We will apply this criterion to semantic representations of sentences
containing meaning shifts in the next section. We will also develop some
tools for proving its satisfiedness.

5.3 Proving Satisfiedness of the Safety Crite-
rion

In this section, we will apply the Safety Criterion informally to a semantic
representation of a sentence involving a case of meaning shift. Then we will
develop a tool which supports (formally) proving satisfiedness of the Safety
Criterion.

As an example we will use the semantic representation of Fvery driver of a
mafia boss is parked out back, which was presented in Figure 5.4 in Section
5.1.1. Does this constraint satisfy the Safety Criterion? Well, it is easy to see
that all nodes in fragments 11 and I'V comply with the Safety Criterion; they
all either dominate X* or are disjoint to X*. The same is true for fragment
V: The only node in this fragment is dominated by X!. To check the nodes
of fragments I and 111, however, we have to inspect the picture a bit more
closely. A hole of fragment I/ dominates X“ and another hole dominates
fragment [11. Since this other hole is disjoint to X*, all nodes of fragment
111 must be disjoint to X“ as well. That leaves fragment I. The only places
this fragment can end up in in a solution is above fragment /I or between
fragments 11 and I11. In the first case, all of its nodes dominate X"; in the
second case, they are all disjoint to X™“. So the Safety Criterion is satisfied
by this constraint.

Now that we have verified that this constraint satisfies the Safety Criterion,
can we say anything more general about why this is the case? In fact, we can.
This constraint is of a very special structure which has some properties that
identify certain places in the constraint as safe for relaxation. This special
structure is called a chain of fragments, or simply chain. Chains look roughly
like depicted in Figure 5.8.

We have a number of upper fragments and a number of lower fragments which
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Figure 5.8: A Chain of Fragments

are connected by dominance edges. These dominance edges go from leaves
of two different upper fragments to each of the roots of a lower fragment.

More formally:

Definition 15 (Chains). Let ¢ be a normal constraint, and let F = (F7, ...,
F,) and G = (Gy,...,G,_1) be sequences of fragments in ¢ such that no
variable appears in two different fragments. For all 4, let X;,Y; be different

leaves of Fj, and let Z; be the root of G;. Then the pair C = (F, G) is called
a chain in g iff forall 1 <7< n -1,

Y,<*Z; A Xi+1<]*Zi m .

The variables X1, Z1,..., 7,1, Y, are called the connection points of C and
n its length.

Chains of fragments have some properties that are very interesting for us, in
particular the following two: All connection points of a chain are pairwise
disjoint (cf. Proposition 16) and all variables of upper fragments are either
disjoint to a connection point or dominate it (cf. Proposition 17).

Proposition 16. Let C = (F,G) be a chain of length n in ¢, and let Z;, 7y,
(0 <i < k <n) be connection points of C. Then

QO):Z’LJ—Z/C at {‘/;'-i-l;"' 7Vk}a

where the V; € Fj.
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Proposition 17. Let C = (F,G) be a chain in ¢, let F € F and G € G,
and let Z be the root of G. Then for all X € F,

wEXLZVXQZ.

These properties are so useful for us, because they give us that, if we relax
a chain at a leaf below a connection point all variables of the chain either
dominate X™* or are disjoint to X*. So chains powerfully support the type
of inferences we have to draw when checking for satisfiedness of the Safety
Criterion.

Returning to the example in Figure 5.4, we can now see that the whole
constraint (except for X!) can be covered by one chain and that the relaxation
gap is indeed dominated by a connection point. From this and the fact that
X! dominates itself it follows that the Safety Criterion is satisfied. But one
chain is not always enough to cover the entire constraint. Consider, for
example, the semantic representation of Fvery rich person of a town expects
to be on every guest list depicted in Figure 5.9. A meaning shift takes place
to model the fact that what the rich persons expect to be on the guest lists
is not themselves but their names.

lam

town every every guest_lis

rich_person var

Qe iV
(@x<j&»
f var
expect o Xl VI .«@/./\\

be_on o XY VIIT

Figure 5.9: Every rich person of a town expects to be on every guest list
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Here we have an embedded verb phrase because of the control construction.
Since every verb introduces a relaxation gap, we have two relaxation gaps
in Figure 5.9. We have to show for each of them in turn that the Safety
Criterion is satisfied. We will illustrate this for the relaxation gap in fragment
V. We cannot find a chain which has a connection point that dominates the
relaxation gap and which covers the entire constraint in one go. But we
can find several chains which all have a connection point that dominates
the relaxation site and which, taken together, do cover the entire constraint.
More concretely, we need two chains, namely the one with fragments I and
11 as upper fragments and IV as lower fragment and the one which consists
of fragments II1] and V as upper and VI as lower fragments. Because of
Propositions 16 and 17, these two chains let us conclude that all nodes of the
constraint graph (except for X') either dominate X* or are disjoint to X%,
so that the Safety Criterion is satisfied for the relaxation gap in fragment
V. Proving satisfiedness of the Safety Criterion for the relaxation gap in
fragment V' I works in just the same way.

5.4 A Safe Syntax/Semantics Interface

The same technique of intelligently covering the entire constraint with chains
can now be used to show that it is not a special property of the constraints in
Figure 5.4 and 5.9 that they are safe, but that in fact our syntax/semantics
interface derives only safe constraints. This means that we can relax our
semantic representation to model meaning shift at exactly those positions
that we chose for linguistic reasons. We don’t have to fear any kind of
overgeneration due to this relaxation.

Note that any constraint derived by the relaxed syntax/semantics interface,
i.e. rules (bl) — (b9) and rules (b10’) and (b10”), can also be constructed from
a constraint derived by the unrelaxed syntax/semantics interface, i.e. rules
(b1) — (b10), by a sequence of relaxation operations. The main result we will
prove is the following:

Theorem 18. Let ¢ be a constraint which was constructed by the unrelazed
syntaz/semantics interface of the example grammar and let ¢' be a constraint
which was constructed for the same utterance by the relazed syntaz/semantics
interface. Let X be a node in ¢ such that there is a relaxation gap at the
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corresponding position in ¢'. Then the Safety Criterion is satisfied for the
relazation of ¢ at X.

Looking at the general structure of the constraints derived by our syn-
tax/semantics interface which is as shown in Figure 5.10 will intuitively make
clear that this theorem holds. The picture suggests that for each relaxation
site in the displayed constraint we can cover the constraint with chains which
have a connection point that dominates the relaxation site.

- s

~
subject

48
PN

D

é

relaxation sites

Figure 5.10: Output of the Syntax/Semantics Interface: Schematic View

For proving Theorem 18, we will proceed in three steps. We will first show
that the semantic contribution of noun phrases are chains. Then we will
make a similar statement about the contribution of verb phrases. Finally, we
will use these results to prove the theorem.

Lemma 19. LetT be a parse tree of our grammar, and let @ be the constraint
that our syntaz/semantics interface assigns to it. Furthermore, let t be a
subtree of T whose root is labeled with NP, let n be the number of NP nodes in

t, and let p; be the conjunction of the constraints corresponding to the nodes
of t. Then there is a chain C = ((Fi,...,Fy),(G1,...,Gn_1)) of length n

COVETINg Q:
Vie) = |JFulJeG.

FeF Geg

69



ZaN
AN

Figure 5.11: A Cascade of Fragments

It would be nice if we could say something similar about the general structure
of the semantic contribution of verb phrases. In fact we can, but we first need
the notion of a cascade of fragments.

Definition 20 (Cascade of Fragments). Let ¢ be a normal constraint
and let CF = (Si,...,S,) be a sequence of fragments in ¢ such that no
variable appears in two different fragments. For all ¢ let R; be the root and
U; aleafof S;. CF is called a cascade of fragments in @ iffforall1 <i <n-—1,

Ui<]*Ri+1 m ©.
We will call Ry, Uy, ... ,U, 1 the anchoring points of CF. n is the length of
the cascade. Figure 5.11 shows a cascade of length 4.
The following property of cascades is important for us.

Proposition 21. Let CF = (S1,...,Sy) be a cascade of fragments in o, let
Rq,..., R, be the roots of S1,...,5n, and let Uy, ... ,U,_1 be the anchoring
points of CF. Then

© ): U;<*X
forany X € ;1 U...US, and

o= XU VX LU,
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(a) (b)

Figure 5.12: Semantic Contribution of Verb Phrases

forany X € S1U...S;.

Now, we can describe the semantic contribution of verb phrases in a general
way. There are two possibilities of what it may look like. Figure 5.12 shows
that they are essentially put together from cascades and chains of fragments.
There is one additional node “dangling” from each fragment of the cascade
which is the lower variable of a relaxation gap. The leaf such an extra variable
is dominated by is disjoint to the anchoring point of the fragment. Note that
with respect to the properties of cascades stated in Proposition 21 these
variables can be treated as a variable of the fragment they are “dangling”
from.

Lemma 22. Let T be a parse tree of our grammar and let ¢ be the constraint
that our syntaz/semantics interface assigns to it. Furthermore, let t be a
subtree of T whose root node v is labeled with VP, let n be the number of verb
nodes, i.e. IV, TV, and CV nodes, in t, and let p; be the conjunction of the
constraints corresponding to the nodes of t. Then there are two possibilities
for what the structure of @y may look like.

1. There is a cascade of fragments (Si,...,S,) with anchoring points
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Us, ... ,U,, where n > 1 is the number of verb nodes in t. X, (which
1s the variable in the semantic representation associated with the node
v of the parse tree, i.e. the root of t) is the root of fragment Sy. This
is depicted in Figure 5.12 (a).

2. There is a cascade of fragments (Sy,...,S,) with anchoring points
Ug,...,U,, where n > 1 is the number of verb nodes in t. X, is
the root of fragment S1. Furthermore, there is a chain of fragments
((F1,... ,Fp),(G1,... ,Gmn-1)), m > 1, and the root of fragment S, is
dominated by a hole of fragment Fy. This is depicted in Figure 5.12 (b).

No wvariable of ¢; takes part in more than one of these fragments and all
variables except for Xi,..., X! take part in at least one of the fragments.
X! is dominated by a leaf of fragment S; which is disjoint to Uj.

Now, everything is prepared for proving Theorem 18. We will show that every
variable of ¢’ complies with the Safety Criterion with respect to any relax-
ation site in ¢'. The fact that all constraints derived by our syntax/semantics
interfaces a are constructed from chains and cascades of fragments, allows
us to exploit Propositions 16, 17 and 21, which make powerful statements
about the relative position of different variables within one chain or cascade
respectively.

Proof of Theorem 18. The only way our grammar allows to expand S, is to
NP VP. So any parse tree T has the following structure: 7' = (S(NP ¢')(VP ¢")).
Let ¢ be the constraint that the relaxed syntax/semantics interface derives
for T. By Lemma 19 the semantic contribution of subtree ¢’ is a chain and

the semantic contribution of ¢” is as one of the two cases described by Lemma
22.

case 1:. The semantic contribution of ¢ is as in case 1.) of Lemma 22, i.e. we
have a chainC = ((F1, Fs, ..., F,), (G1, ... ,Gp_1)) and a cascade CF =
(S1,...,Sm) with anchoring points (U, ... , Uy, 1). The proof will be
achieved in two steps. First we will show that all variable of the chain
comply with the Safety Criterion wrt. any relaxation site in the cascade
and then we will show this for all variables of the cascade.

Rule (b1) of the syntax/semantics interface connects the chain and the
cascade in such a way that the result is the chain C' = ((F], Fy, ... , Fy,),
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(Gy,...,Gp_1)) with connection points Zy, . .. , Z,. Zy € F| dominates
the root of S;. By Propositions 16 and 17 we know that any variable
of the chain dominates Z, or is disjoint to it. We can furthermore
conclude from Proposition 21 and the fact that Z; dominates the root
of S; that Z, also dominates all variables of the cascade. So for any
variable X of the chain and any variable Y of the cascade

PEXTY V XL1Y

holds. This gives us that all variables of the chain comply with the
Safety Criterion with respect to any relaxation site, since relaxation
sites occur only in the cascade. Now, we have to show that all vari-
ables of the cascade also comply with the Safety Criterion wrt. any
relaxation site. Let X} be the upper variable of the relaxation site in
fragment S;. X/ is disjoint to U;. By Proposition 21 U; dominates all
variables of fragments S;i1,...,S,. Therefore, X is disjoint to all
variables of fragments S;;1,...,S5,,. Since X} is a leaf of fragment S;
all variables of S; dominate X;* or are disjoint to it. Furthermore, also
by Proposition 21, U;_; dominates X and all variables of fragments

Si,...,5;_1 dominate U;_; or are disjoint to it. This means that the
same holds for all variables of fragments Si,...,S;_1 with respect to
X;'. Hence

pEXIX!V X LX
for XeS—-1U...US, and any 7,1 <i < m.

case 2:. The semantic contribution of ¢ is as in case 2.) of Lemma 22. We
will need three steps to complete the proof for this case. The first step,
where it is shown for all variables of the semantic contribution of the
subject that they comply with the Safety Criterion, is as in case 1.).
The second step, where all variables belonging to the cascade are shown
to comply with the Safety Criterion, is also as above. That leaves the
chain introduced by the object noun phrase. Let CF = (Si,...,Sn) be
the cascade. Its anchoring points are (Uy,... ,Up—1) and X7, ... X%
are the upper variables of the relaxation gaps in fragments Si,... ,S,.
Furthermore, let C = ((Fi, ..., F,)(G1,...,G, 1) be the chain and Z;
the leaf of fragment F; which dominates the root of S,,. Note that
Zy is a connection point of C. So X} is dominated by a connection
point and the claim holds with respect to this relaxation site. For any
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other relaxation site X} the chain can be expanded in the following
way: C' = ((Si, Fi,...,Fn)(Sm, G4, ... ,Gr—1)). This is a chain be-
cause there is a leaf of fragment S;, namely U;, which dominates the
root of S, (Proposition 21). X} is disjoint to U; and therefore a con-
nection point of C'. Hence, by Propositions 16 and 17, all variables of
C comply with the Safety Criterion with respect to this relaxation site.

O

This theorem gives us for that no relaxation site in a constraint derived
by the relaxed version of our syntax/semantics interface will ever have any
unintended solutions. This means that relaxation for modeling meaning shifts
is safe: we can freely relax whenever we need space for the insertion of a shift
operator.

5.5 Summary

In this chapter, we presented a treatment of meaning shifts in lexical seman-
tics which was first proposed by Egg. By using dominance constraints as a
meta-language he describes phenomena of meaning shift by relaxed under-
specified representations which leave open whether a shift operator is intro-
duced and what it exactly looks like. These decisions which have to be based
on pragmatic as well as lexical knowledge can thus be postponed as long as
it is necessary. Whenever the missing information can be determined it can
be added monotonically.

We have adapted the syntax/semantics interface of the previous chapter to
derive relaxed underspecified representations in line with Egg’s approach.

Egg’s approach relies mainly on making underspecified representations even
less specific. As we have seen, the danger of overgeneration is inherent to
such an approach. However, we could prove that all constraints derived by
our syntax/semantics interface are safe in so far as their structure prevents
any overgeneration. This proof relied heavily on the concept of chains of
fragments. A chain is a substructure of a constraint graph with some special
properties that nicely supports the type of inferences we had to make.
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Chapter 6

Lots of Questions and Some
Answers

In the last chapter we developed a framework for modeling meaning shifts
which provides a semantic representation that can monotonically be aug-
mented with new material at any stage of processing an utterance. We
argued in the previous chapter that such a framework is exactly what we
need. Given this framework the obvious next step is to describe how the
insertion of new material into the semantic representation can be controlled.
This brings us back to the questions we raised in Chapter 2, namely (1) when
to add a shift operator, (2) where to add it, and (3) what shift operator to
add. We saw in Chapter 3 that various people have attempted to answer this
question (among them Délling (1994, Copestake and Briscoe (1995, Copes-
take and Lascarides (1998, Hobbs et al. (1993, Nunberg (1995)). (Egg 1999)
himself largely ignores the control aspect and just assumes some pragmatic
component which comes up with the appropriate shift operators. In Chapter
2 we saw some evidence, however, that what is an appropriate shift operators
cannot be explained in purely pragmatic terms. We will now inspect these
questions with respect to Egg’s accounts and suggest how the influence of
lexical and sortal information on meaning shift could be accounted for.
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6.1 When to Add a Shift Operator

In almost all examples we saw so far meaning shift was a way of avoiding a
sort or type conflict. Consider for example the semantic representation for the
by now well-known sentence I am parked out back displayed in Figure 6.1. The
nodes of this graph are labeled with sorted types which is to be interpreted
in the following way: Type « at node X says that the expression which
is described by the (sub)tree under node X has type a. If the dominance
edge at the position marked with % would just be replaced by identity of the
nodes X* and X' a sort clash would occur, because human and vehicle are

incompatible.
é TR S

be_parked_out_back . (evenicles t)

Figure 6.1: Semantic Representation With Sorted Types

The types of a node can be determined by simple type inference. Semantic
constants are of the usual types, as indicated by the following examples.

a  {{e,1),{(e,1),1))
man (e, t)
love (e, (e,t))

Furthermore, there are constraints on how the types in a local subtree of
a semantic representation are related to each other. For semantic represen-
tations we have seen so far it suffices to consider the four local structures
displayed in Figure 6.2. Figure 6.2(a), for example, says that if something of
type {«, B) is applied to something of type «, the result is of type 5. Note
that there are no constraints on how the types of nodes X and Y in Figure
6.2(d) are related. They are only connected by a dominance edge, which
means that any material changing the type of Y could intervene. This is,
in fact, what we exploited when relaxing semantic representations to avoid
type or sort conflicts.
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lam o:\X:(a,B)

Y:3 . Y:a oY

(a) (b) (©) (d)

Figure 6.2: Local Constraints on Types

The type information available from the semantic constants can be percolated
through the tree (by unification) according to the rules stated in Figure 6.2.
This also holds if we enrich our type system with sorts (as we already did in
Figure 6.1). Actually, for now, we only want to assign sorts to things of type
e. These sorts are partially ordered on an ontological hierarchy. The lattice
in Figure 6.3 might be an excerpt of such a hierarchy.

physical_object
living_CTeatUTé capable_é f_flying l.iveless_thmg
human dnimql " . v_eh'ic_le

elephani | bird pl ane “car
Figure 6.3: Excerpt of an Ontology

Unification of sorted types is done in the usual way: Namely, the result of
unifying types e; and e; is e, where £ is the greatest lower bound of 7 and j;
if there is no such £ unification fails (see e.g. (Copestake et al. 1993)).

The following examples (Figures 6.4, 6.5, and 6.6) will illustrate this mecha-
nism. The lexicon provides sorted types for a, bird, and fly, namely
((es, ), ((es, 1), 1)) for some sort s, (€pird, t), and (€ apavic_of fiying, t)- This sort
and type information is then percolated through the tree by the rules given
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in Figure 6.2. At some point during the construction of the semantic repre-
sentation for A bird flies a(bird) of type {({epirq,t),t) and Az.fly(x) of type
(€capable_of fiying, t) are combined. In order to do so, epirq and €copabic_of fiying
have to be unified. This results in ey, since bird is the greatest lower bound
of bird and capable_of flying, and the semantic representation presented in
Figure 6.4.

<€bird7 t>

]
fly o« Tepira,t)  var-e €,y

Figure 6.4: Example 1: A bird flies

The result of semantic construction for the sentence An animal flies is shown
in Figure 6.5. The unification of egnima With €copabic_of _fiying cOnstraints the
animal which is flying to be a bird.

Chird, t>, <<ebird> t)a t>>

\

//@:«\. \
\
fly o {epira;t) vare €44

Figure 6.5: Example 2: An animal flies

In contrast, An elephant flies gives rise to a sort conflict (again indicated by
4), because €ciephant ANA € apabie_of fiying are incompatible (cf. Figure 6.6).

In addition to the cases where a meaning shift is necessary to resolve a sort or
type conflict, there are cases where even without adding a shift operator the
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hant t)a t) la

€elephant, t>7 <<eeleph,(mta t)a t))

%eelgphant; t)

N
¥ %
\

\

-/@'\\; |
\
fly o Tepira,t) vare €hiq

Figure 6.6: Example 3: An elephant flies

<eelephanta t)

semantic representation was completely well-typed and sorted, but still the
way they are usually understood involves a meaning shift. We saw one such
example in Section 2.2.1 of Chapter 2. These appear to be rarer though and
are sometimes misunderstood which leads to funny incidents!. In cases like
this insertion of a shift operator is triggered by context or world knowledge.
How this exactly work, e.g. what kind of inferences are made, is still an open
question.

6.2 Where to Add the Shift Operator

We explicitly introduced the places where inserting a shift operator is pos-
sible by relaxing the semantic representations at these positions. The syn-
tax/semantics interface we presented in the previous chapter provides re-
laxation gaps above all predicates introduced by verbs. If meaning shift is
necessary to prevent a sort or type conflict those relaxation gaps where a
shift operator has to be introduced can be distinguished by the fact that the
type of the upper variable of the relaxation gap and the type of the lower
variable are not compatible. This is for example the case in the semantic rep-
resentation of I am parked out back in Figure 6.1. In cases of pragmatically

! Like the one about the person who called a Nintendo hot line for help with a difficult
situation in computer game and was told to kneel down and pray at a certain point of the
game. He didn’t carry out the meaning shift and complained, because it didn’t work.
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triggered meaning shift the knowledge which tells us that a certain reading
is improbable can be used to infer where the incompatibility is, i.e. to which
predicate a shift operator should be applied.

Note, however, that our syntax/semantics interface restricts meaning shift to
verbs, while we argued in Chapter 2 that there are also cases where not the
meaning of a verb but the meaning of a noun is shifted. The ham sandwich
at table 6 is getting impatient is an example of this type of meaning shift. To
account for these cases as well we would have to further relax the semantic
representations. More specifically, we would have to introduce relaxation
gaps above nodes labeled by predicates corresponding to the meaning of a
nouns. The semantic representation of A mafia boss is parked out back would
then look like depicted in Figure 6.7.

es,t); ({5, 1), 1))

mafia_boss e (ehuman,t)/@:ot\. \
\
les,t)  varde e,

be_parked_out_back o (evenicles t)

Figure 6.7: The Effect of Further Relaxation

The inferences in sort and type information which this representation allows
us to draw are not strong enough anymore to unambiguously locate the
position where the shift operator has to be introduced. Nevertheless, the
application of a shift operator to mafia_boss is ruled out in this example by
the fact that there is no appropriate operator for a meaning shift of this type,
i.e. an operator shifting a human being to a vehicle. In fact, as we said in
Chapter 2, meaning shifts to the verb seem to be the standard case, while
meaning shifts of the noun are restricted to specific situations, in which
these meaning shifts have a high degree of conventionality. This suggest
that in many situations a meaning shift of the noun is simply not possible,
because no appropriate operator is available, and in those situations where
such an operator is available, it should probably be preferred to others. These
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observations are still quite vague and need closer inspection.

The question of how to control the search for an appropriate operator seems
to become even more problematic when cases where both, a meaning shift of
a noun as well as a verb, take place, as it is the case in the following example:

(6.1) The ham sandwich is parked out back.

6.3 What Shift Operator to Add

This section is concerned with the question of what information plays a role
in meaning shift and how an appropriate shift operator can be determined.
As argued in Chapter 2 this might involve knowledge which does not stem
from linguistic sources. It is not clear how the shift operator is determined
when several sources of knowledge have to interact. As we saw in Chapter 3
it has been proposed to use abductive inference (Hobbs et al. 1993) or a form
of default reasoning (Copestake and Lascarides 1998). In order to yield a full
account of meaning shift something along these lines has to be provided for
our framework of underspecified semantic representations as well. In partic-
ular, inference mechanisms that work on underspecified descriptions of logic
formulas are desirable. The examples we saw suggest that scope ambiguities
(and maybe other ambiguities as well) are independent of meaning shift, so
that even in not yet fully specified semantic representations there is enough
information to decide on an appropriate shift operator. Such mechanisms
of direct deduction would allow to carry out the process of meaning shift
on underspecified representations, which is clearly in the spirit of using in-
formation whenever it is available and only enumerating readings when it is
absolutely necessary. Unfortunately, direct deduction mechanisms are still in
their infancy, but recent results (Jaspers and Koller 1999) let hope for more
soon. Here, I will not go into the question of how context and pragmatic
knowledge influence meaning shift, though. I will concentrate on the role of
more tractable information such as lexical and sortal kmowledge.

We saw in Chapter 2, that there are classes of meaning shift phenomena,
namely polysemy and certain types of metonymy, which exhibit a high degree
of conventionality. This was suggested to be due to the fact that in these
cases the shift operator is lexically determined and thus no pragmatic or
world knowledge is necessary for finding it.
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Let’s first have a look at polysemy. We saw in Chapter 3 that both Délling
(1994) and Pustejovsky (1995) a special kind of sorts to account for the
polymorphic behavior of polysemic words. Dolling calls these sorts hybrid
sorts while Pustejovsky uses the term dotted sorts. In both approaches these
special sorts are constructed by combining other sorts, in particularly sorts
which correspond to classes of the ontology which are usually not compatible.
The word door is taken to denote objects of a dotted sort (or hybrid sort)
which was constructed by combining the sort aperture with the sort physical
object. In the real world these two sorts are incompatible, since no object
can be both, an aperture and a physical object. Looking more closely at
what classifies objects as doors, we find that, in fact, doors are not one
thing which is both, an aperture and a physical object at the same time,
but rather consist of two components where one is an aperture and the other
one a physical object. These two components are both so important for the
definition of door that normally we refer to both when saying door, so that
it is plausible to assume some kind of combination of aperture and physical
object as the sort of door-objects. So the linguistic sort hierarchy is richer
than an ontology which is reflecting the classes of object that exist in the
real world, since it contains dotted sorts? which don’t correspond to a class
in the ontology.

A question which immediately arises is how dotted sort relate to their compo-
nents. All examples of polysemy we have seen seem to imply that an object
with a dotted sort has all properties of either one of its component. For
convenience some of the examples are repeated in 6.2 below.

(6.2) (a) Mary walked through the door.
(b) Mary painted the door blue.
(c) A dwarf stepped out of the blue door.

This suggests that dotted sorts could be taken to be subsorts of their com-
ponents. With this approach the sentences in 6.2 do not give rise to any
sort conflict. By the mechanisms presented in Section 6.1 of this chapter
the predicates are simply specified to denote a property of objects of sort
aperture - physical_object instead of sort aperture or physical_object respec-

21 will adopt Pustejovky’s term and also his notation, writing s; - s, for the dotted sort
consisting of a combination of sorts s; and ss.
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walk_through €po-a> {€humans 1))

Figure 6.8: Dotted Sorts as Subtypes of Their Components

tively. The semantic representation of Mary walked through the door looks
as shown by Figure 6.8, where ep,., stands for epnysicai_object-aperture-

What is problematic about this approach is that it implies that dotted sorts
are more specific than their components. This is counterintuitive. If there are
no contextual restrictions, polysemic words denote dotted sorts, and only if
the situation imposes constraints on the interpretation, one component may
be singled out. In a conversation about book covers, for instance, an utter-
ance like This book is interesting is not vague, but unambiguously making
a statement about the physical object aspect of book. On the other hand,
dotted sorts cannot be taken to be more general than their components, since
this would mean that every aperture was also a door, which is of course not
true. This suggests that dotted sorts cannot easily be incorporated into the
hierarchy of simple sorts. So let’s assume that they are ordered in a hierarchy
of their own. In this hierarchy, 7 - j subsumes ' - j' iff i subsumes i’ and j
subsumes j' in the hierarchy of simple sorts. Let’s also define the function
COMPONENTS in such a way that when given a dotted sort as argument, it
returns the set of all simple sorts constituting this dotted sort and the dotted
sort itself; when given a simple sort, it returns the set containing only the
simple sort itself.

COMPONENTS(i) = {j| j=iorj=j', whereiisa dotted sort
and 3k such that i =k -j ori=j"-k
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This approach leads to sort conflicts, when construction semantic representa-
tions for sentences as those given in 6.2. Let’s have a look at an example. The
(unrelaxed) semantic representation including sorts for Mary walked through
the door looks as presented in Figure 6.9.

walk_through €a, (Ehuman- 1))

Figure 6.9: A Sort Conflict Due to a Dotted Sort

There is a sort conflict, since paint_blue asks for an argument of sort phys-
ical_object, what is supplied is a dot object of sort physical_object-aperture,
and neither one subsumes the other. Hence, we have to fill in an operator
somewhere to resolve this conflict and to account for the meaning shift which
takes place.

To keep the process of meaning shift as uniform as possible, we would like to
have a shift operator which takes walks_through as input and yields something
asking for an argument with a dotted sort. Intuitively, the final semantic
representation should look like in Figure 6.10, where P is some operator.

P shifted the denotation of walk_through from a set M of tuples of objects
of sorts aperture and human to a set M’ of tuples of objects of sorts phys-
ical_objects - aperture and human. Any element (u',v) of M' is such that
there is an object u of sort aperture and (u,v) € M and u is the aperture
of the door u'. A general shift operator of this kind can be characterized as
follows:

P: <<e,<ejt>><ey,<ep,t>>>, where
i € COMPONENTS(i") and j € COMPONENTS(j")

This operator applies only to binary predicates, but of course similar opera-
tors can be defined for predicates with another arity.
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€po-a

Chuman t))a <epo-a; <ehuman; t))) waIk_throu <€a, <ehum(ma t>>

Figure 6.10: Resolving a Sort Conflict Due to a Dotted Sort

Now, let’s turn to the type of meaning shift which is due to metonymy. We
saw in Chapter 2 that there is some evidence for lexical information to be a
factor in determining the shift operator. We argued there that the default
interpretation of Mary enjoyed a book is Mary enjoyed reading a book and
that the information that what is usually done to books is reading is lexical
information. Pustejovsky (1995) accounts for this by means of his qualia
structure (cf. Chapter 3, Section 3.3). The qualia structure allows to specify
certain kinds of information related to the meaning of a word within its lexical
entry. All these qualia roles are available as a semantic representation of the
corresponding word. Pustejovsky assumes that one of them is selected by
an operator introduced into the semantic representation, but what triggers
this process and determines which qualia roles is selected is not described in
detail. (Copestake and Briscoe 1995) also adopt his idea of a qualia structure
to specify additional semantic information in the lexical entry. However,
in their account, the appropriate qualia role is selected already during the
semantic construction process (cf. Chapter 3, Section 3.4). This can result
in decisions which later turn out to be wrong and have to be revised. We
will now sketch how the notion of qualia structure could be adapted to Egg’s
approach.

We will think of qualia information as being associated with objects of a
certain sort. For instance, if we have an object of sort book, the information
that it can be read is provided by the qualia structure associated with the sort
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book. This information can be incorporated into the sort hierarchies. This
then calls for some kind of default inheritance, in order to account for the
fact that dictionary should be a subsort of book, although they are usually
rather referred to than read.

So, considering an example, the relaxed semantic representation for Mary
enjoyed the book would look as depicted in Figure 6.11. Note that the syn-
tax/semantics interface given in the previous chapter does not handle this
case, but it could easily be extended in order to do so. The sort associated
with X!, the lower variable of the relaxation site, gives us access to the qualia
information of that sort. This qualia information provides the preferred shift
operators. If there is no contradictory contextual or pragmatic information,
the shift operator is chosen from this set.

<ebook7 t)

enjoy & (i

) <ehuman ) t>>

/
“:(€human,t) ~ mary

: V
. e
var e ey ok

€human

qualia(book) = telic Tead:<ebooka <ehumam t?

agentive write:(€pook, (Ehuman, t))

Figure 6.11: Mary enjoyed the book

6.4 Summary

This chapter made clear that the question what controls meaning shift and
how this can be modeled is still largely unsolved. However, partial answeres
exploiting in particular lexical and sortal information, have been given. We
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sketched how the influence of lexical and sortal information on meaning shift
can be accounted for in the underspecified approach we presented in the
previous chapters. To this end we made use of dotted sorts and qualia infor-
mation.
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Chapter 7

Conclusion

In this thesis, we have examined an underspecified treatment of meaning
shift due to phenomena like polysemy or metonymy. The key idea of such
a treatment is to cushion potential type or sort conflicts by relaxing the
semantic representation of a sentence involving such a meaning shift so that it
can be monotonically augmented with an operator which makes the meaning
shift explicit.

The framework CLLS (Constraint Language for Lambda-Structures), which
we used as semantic representation language, exploits dominance constraints
between nodes to arrive at underspecified tree descriptions. We presented a
syntax/semantics interface which derives CLLS constraints as underspecified
semantic representations that allow for the augmentation with shift opera-
tors. We showed that this syntax/semantics interface is safe, i.e. none of
the constraints derived by it have solutions where material of the original
constraint appears at the position of the relaxation gap. In proving this re-
sult we developed the notion of chains of fragments. This is a novel subclass
of dominance constraints which has a number of interesting properties. In
addition to proving safety of a constraint they can be used show that the syn-
tax/semantics interface produces only solvable constraints, and a variation
of chains can be used to show that they are efficiently solvable. We consid-
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ered only the syntax/semantics interface for a grammar fragment, but we are
confident that the results should scale up to a grammar with a much wider
coverage (involving e.g. relative clauses, embedded sentences, etc.). What is
much more unclear and should be a point of investigation in the future is,
if the results can be adapted to the full framework of CLLS which provides
parallelism constraints.

As already pointed out several times, this is only the first step in a compre-
hensive treatment of meaning shift. The discussion in Chapter 6 indicated
what the next step involving the actual insertion of an appropriate shift
operator could look like, but also showed that there are still many open
questions related to controlling the search space for the shift operator. In
particular, the role pragmatics plays and how the necessary inferences can
be made on underspecified semantic representations remains a problem for
future research.
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Appendix A

Proofs

A.1 Properties of Fragments

This section will supply the missing proofs for Lemmas 5 — 7 of Chapter 4.

Lemma 5. Let ¢ be a normal constraint, let F' be a fragment in ¢, let X, Y
be different variables in F', and let (M, ) be a solution of ¢. Then there is
a W € F such that the following entailment holds:

eEXIYVYISTXVXLY at {W}

Proof. Assume that (M, a) satisfies ¢; we show that it must also satisfy the
right-hand side. The proof is by induction over the number n of labeling
constraints that ensure the connectedness of the fragment. As ¢ is normal,
there is at most one labeling constraint that has a given variable as its head,
and the set of connecting labeling constraints is always uniquely determined.

n =1. Since X and Y must be connected, ¢ either contains X:f(...Y...)
or Y:f(...X...).
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n — n+ 1. Let F', F be fragments in ¢ which are connected via n and n+1
labeling constraints, respectively. Furthermore, let F/ C F. Then
there must be a variable Y’ € F' and a labeling constraint of the form
Y'if(Yy,...,Y, ..., Y ) or Y:f(Yy,...,Y' ... )Y}) in @, where Y € F
but Y ¢ F', which is needed to connect F' but not F’. Note that
F=FU{Y,.. Y}

We first consider the case that Y':f(...Y ...) is in ¢. By the induc-
tion hypothesis, there are three possibilities of how the denotation of a
variable X € F' can be related to that of Y.

1. If X<*Y”’, then X dominates Y and all of the Y;.
2. Y'<9*X is not possible, since then Y’ would have two labels.
3. X LY at {WW'} then X LY at {W'}, and foralli, X L Y; at {WW'}

as well.

Now consider the case that Y:f(...Y"...) is in ¢. We make the same
case distinction as above.

1. If X<*Y’, then X and Y’ must denote the same node (a case
which is covered by the next case), for assume otherwise. Then
because of the connectedness of F’, there is a sequence of labeling
constraints that connects X and Y’. Hence, there is an Y" € F'
such that Y":g(...,Y’,...) in ¢, in contradiction to normality
and satisfiedness of .

2. HY'<*X, then Y<*X, and for all 7, Y; 1 X at {Y'}.

3. X LY at {W'} is impossible. This requires that there is a la-
beling constraint W':g(... ,Wy,... ,Ws,,...) such that W, <*Y’
and Wy<t*X; but this implies that there is a sequence of label-
ing constraints that connects W, and Y’, which leads to a similar
contradiction as in the first case.

O

Lemma 6. Let ¢ be a normal constraint, let ' be a fragment in ¢, and let
(M, «) be a solution of ¢. Then F contains exactly one variable R such that

v = /\ R<*X.

XeF

91



Proof. Since we are only concerned with finite constraints and since domi-
nance is a partial order on nodes the set {«a(X)|X € F} contains minimal
elements, i.e. nodes which are not dominated by other elements of this set.
The proof that it has a unique minimal element is by contradiction.

Let X,Y be variables in F', o(X) # «(Y), and let them both be minimal
elements of {«(X)|X € F}. Then by Lemma 5 the only way they can be con-
nected is in the following fashion: there isa W € F such that X 1 Y at {W}.
This leads to a contradiction, since it follows that W <*X AW <*Y although
X and Y were assumed to be minimal elements. O

Lemma 7. Let ¢ be a normal constraint, let ' be a fragment in ¢, and let
X, Y be different leaves of F'. Then there is a variable W € F' such that

=X LY at {W).

Proof. By definition F' contains no variables Z;, Z, such that there are label-
ing constraints X:f(...Z;...),Y:f(...Z3...) € ¢. This means that X and
Y cannot dominate each other. But since they must be connected, we know
from Lemma 5 that X 1 Y at {/W} where W € F must hold. O

A.2 Properties of Relaxation and Projection

Lemma 9. The relaxation Rx(¢) of a normal constraint ¢ at X is normal.

Proof. By contradiction. Assume Rx(y) is not normal, while ¢ is. This
means that there must be two distinct occurrences of labeling constraints
Y:f(Y1,...,Yn) and Z:g(Zy,... , Zp) in Rx(p), such that Y#Z in ¢ is not
true. We can distinguish three cases of how Y and Z relate to the relaxation
gap. Note that according to the definition of relaxation neither Y nor Z can
be X*. That leaves the cases of (a) them both being different from X', (b)
them both being X', and (c) one of them being X! and the other one being
different from X!.

(a) Since both Y and Z are different from X' there must be labeling con-
straints Y:f(Y/,...,Y]) and Z:g(Z],...,Z])) in ¢, where Y =Y or
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V/=Xforalll <i<nand Z; = Z;or Z; = X forall 1 < j < m.
Furthermore we know Y#Z in ¢, because ¢ is normal. But by the
definition of relaxation this entails that Y#Z in Rx(¢), which is in
contradiction to our assumption.

Exactly one of Y and Z is X!. Without loss of generality we can assume
that Y is X!. So there must be labeling constraints X:f(Y3,...,Y,)
and Z:9(Zi,...,Z,) in ¢, where again Z; = Z; or Z; = X for all
1 < j < m. Since ¢ is normal we can conclude that X#Z7 in ¢. But
this leads to a contradiction, because it means that by the definition of
relaxation X#Z7 in Rx () must also be true.

Both Y and Z are X'. If f = ¢ everything is okay, because this allowed
by our definition of normal constraints. Otherwise, we know that the
two labeling constraints X:f(Y,...,Y,) and X:¢(Zy,...,Z,) are in
©. Because of the normality of ¢ we also know that X#X in ¢ (note,
that, furthermore, this constraint is not satisfiable). As before we can
conclude from this and the definition of relaxation that X'#X'’ must
be in Rx(¢) and get a contradiction.

O

Before giving the proof for Lemma 12 we will show the following result, which
will turn out be helpful not only for this proof.

Lemma 23. Let M = (A, 0,]) be a A-structure and M7+ = (A7, o', \') its
projection at nodes m, and m,. Then the following holds:

1.

QQW*\Q@K\B

o

p(m)<*p(ma) iff m<*mo, for m,m € AT,
p(m1)#£p(me) iff m#ms, for m, e € Al
o'(o(w)) = J iff o(x) = F, for = € AT
p(m;) = p(m)i iff my = mi, for m,m; € AT,

p(m1) Lp(ms) at p(mo) iff m1 L me at my, for mo, m1,me € AT

N(p(m1)) = p(m2) iff A(m1) = ma, for m, 7 € A”"
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Proof.

There are two possibilities of how a projection p(7) can relate to .

(I) p(m) = 7 and not m,<<*7.

(IT) m = mn' and p(w) = w7’ for some 7’. Then m;<1*7.

1. (a) m and w9 are both as in (I). Hence, p(m) = m and p(m) = m.
The claim follows immediately.

(b) m is as in (I) and my as in (IT). Hence, p(m) = m; and there is a
7' such that m = mn’ and p(ms) = w7’
= p(m)<*p(me) = m<*mn’. But mun’'<<*ma’ and ma' = .
Therefore, m <1*m,.
<= m*r, = m<mr’ = m <, e p(m) <Fp(me).

(c) The case where 7y is as in (I) and m; as in (II) is not possible.

(d) m and 7y are both as in (II). Hence, there are 7’ and ©” such that
m = mn' and p(m) = w7’ and m = " and p(my) = 7",
= w7 <*m,". Therefore mn’'<*mm” must also hold.
« mr'<*mn". Therefore m,m'<*m, 7" must also hold.

2. p is one-to-one.
3. o'(p(m)) = o(m) holds by definition for any = € A7.

4. (a) Both 7w and 7; are as in (I). The claim follows immediately.

(b) 7 is asin (I) and 7; as in (II). Note that then 7, = m, = m;. The
claim follows immediately.

(¢) mis as in (II) and 7; as in (I) is not possible.

(d) Both 7 and ; are as in (II). Hence, there are 7’ and 7" such that
m =mn' and p(7) = myn’ and m; = mr" and p(m;) = mn".
= m,n" = m,7'i. Hence, mn" = mn'i. & mr" = mx'i. Hence,
Ty = 1.

5. (a) m and my are both as in (I). It follows that my must also be as in
(I). Therefore, p(m)) = m1, p(m2)) = 7o and p(mg)) = mp and the
claim immediately follows.
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(b)

One of m; and 7y is as in (I), the other one as i (II). Without loss
of generality we can assume that 7 is as in (I). So there is a 7’
such that my = m7'. = m L w7’ at p(m). We can conclude that
p(m) = m and, since 7, <*m;, m; Lmn' at my. < m Lma’ at m.
Again we can conclude that p(my) = m, because m L 7, at 7.
Therefore, p(m) L m,7" at p(m).

m and my are both as in (II). Therefore there are 7’ and ="
such that m; = mn’ and mp = m7n". = mn’ La," at p(m).
Hence, there is a 7" such that p(m) = m,7" and 7" is a prefix
of both 7' and #”. This let’s us conclude that 7y = m7"” and
that mn' Lmr” at mn". < mra' Lmr" at ;7" and by the same
argumentation as above m, 7' L m,7" at p(m).

6. By the definition of \'.

Now, we give the proof for Lemma 12 restated here.

Lemma 12. An intended solution of Rx(¢) is indeed a solution of Rx(¢).

Proof. Let (M, a), where M = (A, o)), be an intended solution of R x (¢).
By definition the projection o' of @ at nodes a(X*) and «(X') is defined and

(MOL(X“)

a(Xl) )
that (M, «) satisfies Rx (), i.e. every atomic of R x(¢) has to be satisfied by
(M, ). Let 9 be an atomic constraint in Rx (). Then we can distinguish

the following cases.

o/ U{Y = p(a(X1)) | Y € eq,(X)}) satisfies . We have to show

1. 9 is of the form Y <*Z.

2.

3.

Ot W

Y is of the form Y#Z.

1 is of the form Y:f(Zy,..., Zy,).
. 1 is of the form Y; L Y; at Z.

1 is of the form A(Y) = Z.
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Since the proving satisfiedness of ) works in the same way for all of the cases,
we will just give the proof for the first one.

Let 1 be of the form Y<*Z. Then either Y<1*Z in ¢ or Y'<1*Z in ¢, where
Y’ € eq,(X) and Y = X!, or Y<*Z' in ¢, where Z' € eq,(X) and Z =
X*. In the first case, o/(Y)<*a/(Z). By definition o/(Y) = p(a(Y)) and
o(Z) = p(a(Z)). So, p(a(Y))<*p(a(Z)) and by Lemma 23 a(Y)<*a(Z).
In the second case, p(a(X'))<*a/(Z). So, p(a(X'))<*p(a(Z)) and there-
fore a(X')<*a(Z). Finally, in the third case, p(a(Y))<*p(a(X")). Since
pla(X") = p(a(Xh), p(a(Y))<*p(a(X™)) and by Lemma 23 a(Y)<*a(X?).

O

A.3 The Safety Criterion

Proposition 14 (Safety Criterion). Let ¢ be a constraint, X a variable
in ¢, and ¢’ the relaxation of ¢ at X. Then ¢ is safe for relaxation at X if
the following entailment is true:

oE N\ VX vy LX"V XY,
YeV(p)\{X}

Proof. Assume that the entailment is true; we will show that ¢ is safe at X.
To this end, we pick a solution (M',a') (M = (A’,d',X))of ¢' and show
that it is intended. By assumption, (M', o) satisfied Ay ¢y )\ (3 (V<" X"V
Y L X%V X!I<a'Y).
To proof intendedness we have to show the following two properties:

1. the projection « of o/ at nodes o/ (X*), o/ (X") is defined.

2. (M, aU{Y = p(/(X") | Y € eq,(X)}), where M = (A, 0, )) is the

projection of M’ at nodes o/ (X%), o/ (X"), satisfies ¢.

1. To prove that property 1 holds, we have to show that o/(Y) € Azgg) U
{a(X")} for all Y € V(¢'). We do so by contradiction.

Let Y € V(¢') such that a(Y)¢AZE§7)) U {a(X¥)}. Then o(X*) must
be a prefix of a(Y), but they may not be equal, and a(X") must not
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be a prefix of «(Y’), which is in contradiction to the assumption that
the the entailment is true.

. To show that property 2 also holds, we first have to make sure that
aU{Y — p(/(X") | Y € eq,(X)} is defined on all variables of ¢.
It can easily be seen that this is the case, because « is defined on all
variables of ¢’ and the only variables of ¢ which are not also variables
of ¢’ are those in eq,(X). Then we have to show that all atomic
constraints in ¢ are satisfied. This is where Lemma 23 comes in handy
again. Similar as in the proof for Lemma 12 we will just demonstrate
how the proof works by spelling it out for one type if atomic constraint.
This time we will pick the labeling constraint, i.e. we will show that
(M,aU{Y — p(c/(X")) | Y € eq,(X)}) satisfies any constraint of the
form Y:f(Y1,...,V,) in ¢. We have to distinguish three cases:

(a) Y, Y1,...,Y,¢eq,(X) and therefore a(Y) = p(c/(Y)) and a(Y;) =
p((Y;)) for 1 < ¢ < n. Furthermore this implies that
YV:if(Y1,...,Va) in ¢ and is satisfied by (M’,’). So we know
that o'(¢/(Y)) = f and by Lemma 23 o(p(¢/(Y)) = f. We also
know that o/(Y;) = o/(Y)i for 1 < i < n, and by Lemma 23
p(e/(Yi)) = p(o/(Y))1.

(b) Y € eq,(X) and Y7,...,Y,¢eq,(X). So now a(Y) = p(c/(X?))
and XU f(Yy,...,Vn) in¢'. Again, we can conclude that
a(p(c/(XY)) = f from o' (o/ (X)) and that p(a/(Y;)) = p(a/(XY))i
for 1 <i <n from o/(Y;) = /(X")i by Lemma 23.

(b) There is a j,1 < j < n, Y; € eq,(X) and Y, Y;¢eq, (X) for i#j
and 1 < ¢ < n. This means that «(Y;) = p(¢/(X')) = o/(X*) and
YVif(Ye,..., X% ..., V) in¢. o (X*) = o/ (Y)i. This means
that not o (X*)<*/(Y') and therefore p(¢/(Y)) = o/(Y). Hence,
p(e/(Y))i = a(Y;).
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A.4 Properties of Chains and Cascades of
Fragments

Propositions 16 and 17 stated some properties of chains of fragments that
turned out to be very useful for us. Before turning to their proofs, we will
show the following “quasi-transitivity” result about disjointness, which will
be helpful.

Lemma 24. If V and W are sets of variables, the following entailment s
true:

X1YatVAY LZatWA N\ VEWEXLZatVUW

vey
wew

Proof. Let (M, a) be a solution of the constraint on the left-hand side. Let
my € {a(V) |V € V}

be the branching point of «(X) and «(Y), and let 7y be the analogous
branching point of «(Y) and «(Z). Then there are paths 7'y, 7}, 7, 7} and
numbers i, 7, k,l and such that ¢ # k£ and j # [ and the following relations
hold:

a(X) = mwiny oY) = awknl,

a(Z) = myjny, oY) = wylal
As my and myy are different by assumption, it follows from the relations for

a(Y) that one must be a proper prefix of the other. Let us assume, without
loss of generality, that my is a proper prefix of m. Then we can write

Tw = TTyT.

By substituting this into the above equations, we can conclude from the
equations for a(Y’) that the first number on the path 7 must be /; so a(X)
starts with 71, and a(Z) starts with myj. This means that a(X) and «(Z)
are disjoint, and their branching point is 7y . O

Proposition 16, repeated below, states that all connection points of a chain
are pairwise disjoint.
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Proposition 25. Let C = (F,G) be a chain of length n in ¢, and let Z;, Zy,
(0 <i < k< n) be connection points of C. Then

¥ ):Z'LJ—Zk at {‘/;'-i-la"' aV;C}a
where the V; € Fj.

Proof. By induction on k — i.

k—1=1. Z; and Z;,, are dominated by different leaves of Fj,;, which are
disjoint by Lemma 7.

k—1—k—1+ 1. We know by induction hypothesis that

oEZ;LZk at {Vigq,..., Vi 1}
Furthermore, we know from Lemma 7 that
0 E Zy1 L Zy at {Vi}.
As all the Fj are disjoint, we can conclude by Lemma 24 that
oE=EZ; LZyat {Vis1,... , Vi},

which is what we wanted to show.

0

Before proceeding to the proof of Proposition 17, we will show an additional
result which we need for the proof.

Lemma 26. Let C(F,G) with F = (Fi,...,F,) and G = (G1,... ,Gn_1)
be a chain in ¢. Let R; be the root of fragment F; and let X; and Y; be
the holes of fragment F; that dominate the roots of fragments G;_1 and G},
respectively. Then for any F;, F;yy the following holds:

o EXip<'R; V Yi<"Riyx V R L Ry

Proof. By induction over k.
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k = 1. By definition X;,,<1*Z; and Y;<1*Z;, where Z; is the root of fragment
G;. This implies X;1x<*Y; V Y;<*X;yx. Since fragments cannot
overlap, it also holds that X; ,<*R; V Y;<*R; .

k — k + 1. The induction hypothesis gives us that X;,, <*R; V Y;<"R; 1 1
and Y, 1<*Riyp V X x<<*R; 1 hold. We will make a case distinc-
tion according to which of the disjuncts are true:

1. Xiyk 1<*R; and Y 1<*R;yy are true. Since X 1L Yiip 1,
R; 1 R;y; must also be true.

2. Xigp—1<"R; and Xk <V Riyp—1. Ripp1<"Xiqk-1 and therefore
Xi+k<]*Ri-

3. Vi<*Rijix—1 and Y g 1<*Rijrkx. Riyp-1<*Yiirp—1 and therefore
Yi<"R; 4.

4. V;<*Ri k-1 and X, x<<*R; 1. Fragments cannot overlap. This
gives us that (a) Y;#X;,x and that (b) if V;<* X, ¢, then V;<*R;
and if X, ,<*Y;, then X, <*R;. This means that
Yi<*Rivr V X;1x<*R; holds.

0

Finally, chains have the property that variables of upper fragments are either
disjoint to connection points or dominate them as was stated by Proposition
17.

Proposition 17. Let C = (F,G) be a chain in ¢, let F € F and G € G,
and let Z be the root of G. Then for all X € F,

eEX1ZVX<Z.

Proof. Let i be the index of F' in F, and let k£ be the index of G in G. The
claim follows immediately for k£ € {i — 1,4}.

For k¢{i — 1,4}, it can be shown by contradiction: We assume that a pair
(M, «) satisfies both ¢ and Z<*X. Under this assumption, we distinguish
cases as to whether a(Z) # a(X) or a(Z) = a(X).
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a(Z) = a(X). We can further distinguish whether i is larger or smaller than
k. The two cases can be handled analogously, so we will only consider
the case ¢ < k here. Let X be the hole of fragment F}, that dominates
the root of fragment Gy and Y} the hole that dominates the root of
G—1. Since fragments cannot overlap, the root of F; dominates the
root of F'in (M, a). Then, by Lemma 26, X} also dominates the root
of F', which contradicts the disjointness of leaves of fragments.

a(Z) # a(X). Again we will only consider the case where i < k. Let Y and
X} be as before, let Y; be defined analogously to Y}, and let R and Ry be
the roots of fragments F' and F}, respectively. Since a(Z)<*a(X) and
a(Yy)<*a(Z), a(Yr)<t*a(X) also holds. This means that neither Y;<t* R
nor R | Ry is true. In this case X;<1* R must be satisfied according to
Lemma 26, which is in contradiction to the disjointness of the leaves of
fragment Fj.

O

Now, we will turn to the proof of Proposition 21, which states some properties
of cascades of fragments.

Proposition 27. Let CF = (Si,...,Sy) be a cascade of fragments in ¢, let
Ry, ..., R, be the roots of S1,...,S,, and let Uy, ... ,U, 1 be the anchoring
points of CF. Then

(] ): U;<*X

forany X € ;1 U...US, and
o EX<U; VX LU
forany X € S1U...S;.

Proof. By induction over n, the length of the cascade.

n = 1.. There is only one fragment. Uj is the root of this fragment and U; a
leaf.
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n—n+1.. Let CF = (Si,...,Sn+1) be a cascade of length n + 1 with an-
choring points Uy, ... ,U,. Let CF' = (S,...,Sn41). CF' is a cascade
of length n and the claim holds for CF’ by the induction hypothe-
sis. In particular, for all X € Sy U...U S, Uj<*X, where Uj is
the root of fragment Sy. By definition U;<*U;. Hence, U;<* X for all
X € S5U...US,41, which proves the first part of the claim. U is a
leaf of fragment S;. Therefore all variables of S; are disjoint to U; or
dominate it, i.e. X<*U; V X L U; for all X € S;. By the first part of
the claim we know that U; dominates any U; with 1 < 7 < n. Hence, all
variables of Sy are either disjoint to U; or dominate it. This completes
the proof for the second part of the claim.

A.5 A Safe Syntax/Semantics Interface

In this Section we will give the proof for Lemmas 19 and 22, which claim that
the semantic contribution of a noun phrase has the structure of a chain and
while the semantic contribution of a verb phrase is a cascade of fragments to
which a chain may be attached.

Lemma 19. Let T be a parse tree of our grammar, and let ¢ be the con-
straint that our syntax/semantics interface assigns to it. Furthermore, let ¢
be a subtree of T" whose root is labeled with NP, let n be the number of NP
nodes in ¢, and let ¢; be the conjunction of the constraints corresponding to
the nodes of £. Then there is a chain C = ((F,...,F,),(G1,...,G, 1)) of

length n covering ¢:
Vie)=|JFulJe@.
FeFr Geg

Proof. By induction over n.

n = 1. In this case, ¢ has the form NP(Det (W) N(N(W,))), where W; and W,
are words. As we can easily see from the rules (b2) and (b3), the resulting
constraint ¢, is a single fragment, so C = ((V(¢¢)), ()) is a chain of length 1.
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n — 1 — n. Let ¢’ be the largest proper subtree of ¢ whose root is labeled with
NP; then ¢ = NP(N(W;) PP(P(W>) t')), where W, and W, are again words, and
t' contains n — 1 NP nodes.

By induction hypothesis, the semantics ¢y of ¢’ is a chain ¢’ = (F',G’) of
length n — 1 such that the fragments in 7' and G’ form a partition of V(¢ );
say, F' = (F{,... ,F]_ 1) and G' = (GY,... ,G}_,).

According to the syntax/semantics interface, we obtain ¢, from ¢, by ap-
plications of the rules (b2), (b4), and (b5). These rules introduce two new
fragments; let Fy be the fragment consisting of the contributions of rules (b2)
and (b4), and let G be the fragment introduced by rule (b5). Furthermore,
rule (b5) extends fragment F] to a fragment F; which contains a new leaf,
namely the scope. Finally, there are dominance constraints, demanding that
the root of Gy be dominated by the new leaf of fragment Fj as well as a leaf
of fragment Fj.

This means that (Fy, Fi, Fy, ..., F)) and (Gy,GY,...,Gl_,) form a chain

n—1
in . Its length is n, and as it contains all variables that the three rule
applications introduced, its fragments contain all variables in ;. 0

Lemma 22. Let T be a parse tree of our grammar and let ¢ be the constraint
that our syntax/semantics interface assigns to it. Furthermore, let ¢ be a
subtree of T whose root node v is labeled with VP, let n be the number of
verb nodes, i.e. IV, TV, and CV nodes, in ¢, and let ¢; be the conjunction of the
constraints corresponding to the nodes of ¢. Then there are two possibilities
for what the structure of ¢, may look like.

1. There is a cascade of fragments (Si,...,S,) with anchoring points
Us, - .. ,U,, where n > 1 is the number of verb nodes in ¢. X, (which
is the variable in the semantic representation associated with the node
v of the parse tree, i.e. the root of ) is the root of fragment S;. This
is depicted in Figure 5.12 (a).

2. There is a cascade of fragments (Si,...,S,) with anchoring points
Up,...,U,, where n > 1 is the number of verb nodes in t. X, is
the root of fragment S;. Furthermore, there is a chain of fragments
((Fy,...,Fp), (G1,... ,Gm-1)), m > 1, and the root of fragment S, is
dominated by a hole of fragment F;. This is depicted in Figure 5.12 (b).
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No variable of ¢; takes part in more than one of these fragments and all
variables except for X! ... X! take part in at least one of the fragments.
X! is dominated by a leaf of fragment S; which is disjoint to U;.

Proof. By induction over n.

n=1.. t will either look like VP(IV(WW)) or like VP(TV(W)NP(t'), where W
is a word. The semantic representation for the first case is derived by
rules (b7) and (b10”) of the syntax/semantics interface. It is easy to
see that the contribution is as in case 1.) of the lemma, where the
cascade is of length 1. The contribution of ¢ is a chain as described in
Lemma 19. It is connected to the semantics of the verb by rules (b8)
and (b10”). Again it is easy to see that the result is as in case 2.) of
the lemma and the cascade is of length 1.

n — n + 1.. There is only one possibility of embedding verb nodes, namely
the following rule: VP — CV VP. Hence, the parse tree for ¢ looks like
this VP(CV(W)VP(t')), where t’ contains n verb nodes. By the induction
hypothesis the structure of ¢ can be either as in case 1.) of the lemma
or as in case 2.).

case 1.. Let Sy be the fragment introduced by rule (b9) and R its root.
A leaf of this fragment dominates the root of fragment S;. Let
X be this leaf. Then the contribution of ¢ is a cascade CF' =
(So, S —1,...,S,) with anchoring points R, X, Uy, ... ,U,.

case 2.. In this case the semantic contribution of ¢’ consists of a chain
and a cascade. Rule (b9) only affects the cascade. As in case 1.)
it adds a fragment to the top, so that the result is still a chain
and a (somewhat enlargened) cascade.

104



Bibliography

Bartsch, R. (1984). The Structure of Word Meanings: Polysemy,
Metaphor, Metonymy. In F. Landman and F. Veltman (Eds.), Va-

rieties of Formal Semantics, Groningen-Amsterdam Studies in Seman-
tics. FORIS Publications.

Bos, J. (1996). Predicate Logic Unplugged. In Proceedings of the 10th Am-
sterdam Colloquium.

Copestake, A. and T. Briscoe (1995). Semi-productive polysemy and sense
extension. Journal of Semantics.

Copestake, A. and A. Lascarides (1998). Pragmatics and Word Meaning.
Journal of Linguistics.

Copestake, A., A. Sanfilippo, T. Briscoe, and V. de Paiva (1993). Inher-
itance, Defaults, and the Lexicon, Chapter The AQUILEX LKB: An
Introduction. Camebridge University Press.

Cruse, D. A. (1991). Lexzical Semantics. Cambridge Textbooks in Linguis-
tics. Cambridge: Cambridge University Press.

Doélling, J. (1994). Sortale Selektionsbeschrinkungen und systematis-
che Bedeutungsvariationen. In Kognitive Semantik. Ergebnisse, Prob-
leme, Perspektiven, Tiibinger Beitrage zur Linguistik 395. Tiibingen:
Schwarz, M.

Délling, J. (1997). Semantic Form and Abductive Fixation of Parameters.
In From Underspecification to Interpretation, Working Papers of the
Institute for Logic and Linguistics Nr. 29. Heidelberg, Germany: van
der Sandt, R. and Blutner, R. and Bierwisch, M.

Egg, M. (1999). Reinterpretation from a synchronic and a diachronic point
of view. Technical report, Arbeitspapiere der FG Sprachwissenschaft,
Universitat Konstanz.

105



Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998, August). Constraints
over Lambda-Structures in Semantic Underspecification. In Proceedings
of the 17th International Conference on Computational Linguistics and

36th Annual Meeting of the Association for Computational Linguistics
(COLING/ACL’98), Montreal, Canada, pp. 353-359.

Fries, N. (1980). Ambiguitit und Vagheit. Linguistische Arbeiten 84.
Tiibingen: Max Niemeyer Verlag.

Hobbs, J. R., M. E. Stickel, D. E. Appelt, and P. Martin (1993). Interpre-
tation as abduction. Artificial Intelligence Vol. 63 No. 1-2.

Jaspers, J. and A. Koller (1999). A Calculus for Direct Deduction with
Dominance Constraints. In Proceedings of the Twelfth Amsterdam Col-
loguium, Amsterdam.

Koller, A. (1999). Constraint Languages for Semantic Underspecification.
Master’s thesis, Universitiat des Saarlandes.

Nunberg, G. (1995). Transfers of Meaning. Journal of Semantics 12, 109
132.

Pinkal, M. (1995). Radical Underspecification. In P. Dekker and
M. Stokhof (Eds.), Proceedings of the 10th Amsterdam Collogquium.
University of Amsterdam.

Pustejovsky, J. (1994). Computational Lexical Semantics, Chapter Lin-
guistic Constraints on Type Coercion. Cambridge University Press.

Pustejovsky, J. (1995). The Generative Lexicon. Cambridge: MIT Press.

Reyle, U. (1993). Dealing with Ambiguities by Underspecification: Con-
struction, Representation, and Inference. Journal of Semantics.

van Deemter, K. and S. Peters (1996). Semantic Ambiguity and Under-
specification. Stanford: CSLI.

Verspoor, C. (1997). Contextually-Dependent Lexical Semantics. Ph. D.
thesis, University of Edinburgh.

Xu, F. (1998). Underspecified Representation and Resolution of Ellipsis.
Master’s thesis, Universitat des Saarlandes.

106



