Classifying Scope Ambiguities

Malte Gabsdil and Kristina Striegnitz
Department of Computational Linguistics
Universitit des Saarlandes, Saarbriicken, Germany
{gabsdil,kris}@coli.uni-sb.de

Abstract

We describe the architecture and implementation of a
system which compares semantic representations of nat-
ural language input w.r.t. equivalence of logical content
and context change potential. Giving a clear graphi-
cal representation of the relationship between different
readings, the stand-alone version of the system can be
used as a classroom tool. Furthermore the core system
can be incorporated into other discourse processing sys-
tems (e.g. Johan Bos’ DORIS system (Bos, 1998)) where
one might want to ignore logically equivalent readings in
order to keep the number of readings small and thus im-
prove efficiency.

The system relies heavily on existing implementations
and code available via the internet. These are integrated
and put to the desired use by a Prolog interface. By il-
lustrating the architecture of this system, we want to
argue that it is possible to build rather complex systems
involving multiple levels of linguistic processing without
having to spend an unreasonably large amount of time
on the implementation of basic functionalities.

1 Introduction

Scopal ambiguity arising from the interaction
of several quantifiers in one sentence has been
a major topic of investigation (Cooper, 1975;
Hobbs and Shieber, 1987) in formal semantics.
But although it has been shown that all pos-
sible permutations of the quantifiers need not
give rise to well-formed readings, in principle
the number of readings is exponential in the
number of quantifiers in a sentence. Hence, enu-
merating all readings can be quite inefficient.
Lately, underspecification has been investigated
intensively as a possible solution to this prob-
lem. The idea is to find a representation which
describes all readings in a compact way and to
delay explicitly spelling out these readings for as
long as possible. However, sometimes enumer-

ation cannot be avoided; for example when in-
ference is to be done. Direct deduction, i.e. de-
duction on underspecified descriptions, is being
investigated, but there are still a lot of unsolved
problems. In contrast, normal deduction on e.g.
formulas of first order logic is well understood.
There is a long tradition of research on auto-
mated theorem proving in computer science and
many efficient implementations are available.

The problem of exponential growth of the
number of readings and thus the number of in-
ference problems, can be mitigated by collaps-
ing logically equivalent readings into one group.
Everything that can be proved to be true for
one arbitrary member of such a group should
also hold for all others (though, as we shall see
below, members of a group can differ in their
dynamic potential).

We describe a system which takes natural lan-
guage discourse as input, enumerates all possi-
ble readings, and orders them in a graph like
structure. This graph gives a clear representa-
tion of equivalence of readings and the entail-
ment relationships that hold between different
readings. Furthermore the dynamic potential of
each reading is computed. It is also possible to
compare the semantic content of two different
input sentences, again in terms of their static
and dynamic meanings.

The linguistic modules, grammar, semantic
construction, and enumeration of readings, are
based on code presented in (Blackburn and
Bos, 1998), which is available via the World
Wide Web. The comparison of readings as to
their logical equivalence is formulated as entail-
ment problems which are then send to theorem
provers. For this task we have a local instal-
lation of Otter (McCune, 1994), but can also
make use of the MathWeb society of theorem
proving agents (Franke and Kohlhase, 1999).

By using existing systems and assembling
them in a “plug and play” fashion, we were able
to build a system which makes use of state of
the art techniques and covers several levels of
linguistic processing. And we could do so with-
out having to devote unreasonably much time
to the development of the basic modules, be-
fore being able to turn to the subjects we were
originally interested in.

The result is a tool which, due to its modular-
ity, is well suited for further extension. Integra-
tion with other systems (e.g. the DORIS system
(Bos, 1998)) is planned. Also, we think that it
should be a nice classroom tool to illustrate the
effect of scopal ambiguity and demonstrate how
logically equivalent sentences may differ in their
dynamic potential.

2 Architecture

The System consists of three different compo-
nents that are linked together by a Prolog in-
terface (see Figure 1).

GUI
o Control-Window
e DaVinci
}

Linguistics Theorem Prover
e Lexicon / \ e Tableau
o Grammar o Otter
o Sem.Constr. o MathWeb

Figure 1: Schematic view of the System-

Architecture

The linguistics module is based on code pre-
sented in (Blackburn and Bos, 1998). It com-
prises a 150 word lexicon and a grammar for
a small fragment of English. As for seman-
tic construction, there are several different for-
malisms included: Keller-Storage (Keller, 1988)
and Hole Semantics (Bos, 1995) applied to pred-
icate logic as well as DRT. All these formalisms
come with their own interface to the lexicon and
can therefore use the same grammar.

The second module consists of interfaces to
different theorem provers. First, a simple
tableau-prover again taken from Blackburn and
Bos (1998). Second, a local installation of Ot-
ter (McCune, 1994), a resolution based theo-
rem prover. Finally, we can make use of the

MathWeb society of distributed theorem prov-
ing agents (Franke and Kohlhase, 1999), which
gives us access to a variety fast theorem provers.

The third module of the system is the user
interface, which again is subdivided into two
parts. First, a control panel which accepts user
input and offers menus for selecting different se-
mantic formalisms and theorem provers. Sec-
ond an interface to the DaVinci system devel-
oped at the University of Bremen (Frohlich and
Werner, 1998). DaVinci is a tool for represent-
ing trees and lattice-structures. It is well suited
for our purposes because we represent implica-
tion relations between readings in terms of semi-
lattices (see section 4). By clicking on the nodes
of such a lattice, one can see the readings and
(according to the chosen semantic formalism)
DRSs that are associated with them.

3 The Prolog interface

The Prolog interface has to read the user input
and interpret the chosen options. There are two
main tasks between which the user can choose:
firstly, analyse one discourse and order the dif-
ferent readings it may have according to logical
implication, and secondly, take two discourses
as input and compare them w.r.t. logical im-
plication. Furthermore the user can specify a
semantic formalism and a theorem prover.

As a first step, independent of the chosen
task, the input is analysed by the linguistics
module. The analyses are returned in form of
lists of readings, which may be logical formu-
lae or DRSs, depending on which semantic for-
malism was specified. In the second step the
readings are sorted. The core sorting algorithm
is the same for both tasks. It takes a list of
first-order logic formulae as input and returns a
graph-like structure expressing the entailment
relationships that hold between these readings.
Depending on the chosen semantic formalism in
a third step the dynamic potential of each read-
ing is computed.

In the following we describe the sorting of
readings and the computation of their dynamic
potential in more detail.

3.1 Sorting of readings

The entailment relationship between two read-
ings, rl and r2, can be determined by sending
the problems “rl implies r2” and “r2 implies
rl” to a theorem prover. The answers will tell

us whether they are equivalent, one implies the
other, or neither is the case.

As mentioned above, the input to the sorting
algorithm is a [list of readings. If we were to
compare each reading with all others, we would
have to make 222;% x proofs, where n is the
number of readings. The worst case scenario
will always be this, but by choosing a clever
representation, it is possible to often get along
with less proofs.

We chose a graph-like structure’. Readings
are associated with nodes of this graph and en-
tailment is encoded via the dominance relation
between nodes, which works like this: Let rl
and r2 be two readings which are associated
with nodes nl and n2 respectively. rl implies
r2 iff n1 dominates n2.

Each reading is given a unique identifier and
then nodes are represented by the following
structure.

1

label node id

ids set of reading ids
up set of node ids
down set of node ids

other set of node ids

The feature ids contains the ids of all readings
which are associated with this node. Naturally
this means that they are all equivalent. up in-
dicates those readings that imply the readings
associated with this node and down those that
are implied by this node. other holds the rest,
i.e. those readings that are not in an entailment
relation with the readings of this node.

The graph is described by a list of these node-
structures. In the beginning of the sorting pro-
cess it is empty. Then every reading is compared
to one representative of each node in this list
(hereby avoiding unnecessary proofs) and the
newly gained information is added by extend-
ing the appropriate slot of the node structure.
If the reading couldn’t be inserted into the ids
slot of any node, a new node is created for this
reading and concatenated to the list. Further
proofs could be saved by exploiting transitivity
during the sorting process. Imagine reading rl
implies reading r2, and we already know that

!This is inspired by an idea of Denys Duchier
(Duchier and Gardent, 1999)

reading r2 implies reading r3, then there is no
need to compare readings rl and r3.

Section 4 contains a detailed example illus-
trating the structure of our representation.

3.2 Computation of dynamic potential

We represent the dynamic potential of a seman-
tic description as the set of discourse referents
that are accessible for a continuation of the dis-
course, i.e. the discourse referents introduced in
the top level DRS. A discourse referent is iden-
tified by the things we know about him, so that
we just have to collect all the conditions which
mention this discourse referent.

It is worth emphasizing that readings may dif-
fer in their dynamic potential, although they are
logically equivalent. Again, we refer to the fol-
lowing section for an example.

4 Examples and Evaluation

We now want to illustrate by means of an ex-
ample how collapsing logically equivalent read-
ings into one group reduces the number of proofs
necessary to compute an entailment lattice. The
example given in (1) has 18 different readings
which can be reduced to 11 groups.

(1) Every owner of a hash bar gives every
criminal a big kahuna burger.

The graph representing the entailment rela-
tionships between these groups has a rather in-
teresting form as it falls into two parts. It is dis-
played in Figure 2. In Figure 2 we also give the
internal representation of nodes 5 and 10. Note
how this representation identifies their position
in the graph.

In the worst case, a pairwise comparison of 18
different readings would involve 2 317 | n = 306
proofs. By grouping equivalent readings to-
gether, the system can reduce this number by
almost half to 162.

The graph in Figure 2 is split in two, which
shows that the readings represented in the left
lattice stand in no entailment relation to the
readings on the right side. In this particular
example, the lattice on the left side holds the
readings where a hash bar appears in the re-
striction of every owner, meaning that everyone
has its own hash bar. In contrast, the lattice on
the right comprises all readings where there are

several owner of one and the same hashbar, i.e.
a hash bar outscopes every owner.

daVinci V2.0.3

label 5 label 10
up [up [5,8, 6]
down [8,6,3, down [9]

10,4, 9] other [3,4,7,
other [7,1,11,2] 1,11,2]

Figure 2: Lattice structure for (1) and internal
representation of nodes 5 and 10

Another interesting example is:
(2) Butch didn’t forget to shoot a criminal.

Due to the scopal ambiguity between the
existential quantifier and the negation, it has
(among others) the two readings displayed in
Figure 32. These readings are logically equiva-
lent, but differ in terms of their dynamic poten-
tial. Assuming that negation restricts accessi-
bility, the second reading can be continued by
His name was Vincent, while this is not possible
for the first one.

x1 x1 x2
x1 = butch x1 = butch
criminal(x2)
x2
S criminal(x2) = -
shoot(x1,x2) | shoot(x1,x2)

Figure 3: Two readings of Example (2)

*We used a somewhat oversimplified analysis of neg-
ative verbs, which serves its purpose here, though.

5 Conclusion

We built a system that orders readings of sco-
pally ambiguous sentences w.r.t. logical entail-
ment and dynamic potential. A graph-like rep-
resentation has proved to be very efficient for
this task.

By freely using available implementations we
could base our system on advanced techniques
in natural language processing and theorem
proving.

We are confident that the described system
makes up a useful classroom tool. An interest-
ing experiment would be to incorporate it into
other discourse processing systems in order to
cut down the total number of readings. Also
it should be interesting to investigate, how it
could be used for selecting the preferred read-
ing of sentences involving presupposition, since
it has been argued that always the strongest
reading is preferred.

References

P. Blackburn and J. Bos. 1998. Representation and In-
ference for Natural Language. A First Course in Com-
putational Semantics. http://www.coli.uni-sb.de/
“bos/comsem/.

P. Blackburn, J. Bos, M. Kohlhase, and H. de Niv-
elle. 1999. Inference and Computational Semantics.
In Bunt and Thijsse, editors, IWCS-3, Tilburg, NL.

J. Bos. 1995. Predicate Logic Unplugged. In 10th Ams-
terdam Colloquium.

J. Bos. 1998. The DORIS-System. http://www.coli.
uni-sb.de/ bos/atp/doris.html.

R. Cooper. 1975. Montague’s semantic theory and trans-
formational syntaz. Ph.D. thesis, University af Mas-
sachusetts at Ambherst.

D. Duchier and C. Gardent. 1999. A Constraint-Based
Treatment of Descriptions. In Bunt and Thijsse, edi-
tors, IWCS-3, Tilburg, NL.

A. Franke and M. Kohlhase. 1999. System Description:
MathWeb, an Agent-Based Communication Layer for
Distributed Automated Theorem Proving. In Cade
’99.

M. Frohlich and M. Werner.
System.
~davinci/.

J. Hobbs and S. Shieber. 1987. An algorithm for gener-
ating quantifier scoping. Computational Linguistics.

W. Keller. 1988. Nested Cooper Storage: The proper
treatment of quantification in ordinary noun phrases.
In Reyle and Rohrer, editors, Natural Language Pars-
ing and Linguistic Theory. D. Reidel Publishing Com-
pany.

W. McCune, 1994. Otter Reference Manual and Guide.
http://www-unix.mcs.anl.gov/AR/otter/.

1998. The daVinci

http://www.informatik.uni-bremen.de/

