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Abstract. Type and sort conflicts in semantics are usually resolved by a process
of reinterpretation, which introduces an operator into the semantic representation.
We elaborate on the foundations of a recent approach to reinterpretation within a
framework for semantic underspecification. In this approach, relaxed underspecified
semantic representations are inferred from the syntactic structure, leaving space
for subsequent addition of reinterpretation operators. Unfortunately, a structural
danger of overgeneration is inherent to the relaxation of underspecified semantic
representations. We identify the problem and distinguish structural properties that
avoid it. We furthermore develop techniques for proving these properties and apply
them to prove the safety of relaxation in a prototypical syntax/semantics interface.
In doing so, we present some novel properties of tree descriptions in the constraint
language over lambda structures (CLLS).
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1. Introduction

In natural language semantics, sort or type conflicts as well as as-
sumptions of the context a sentence is uttered in may cause meaning
shifts of words or expressions (Bierwisch, 1983; Délling, 1994; Nunberg,
1995; Pustejovsky, 1995). An example is the following sentence.

(1) Peter began a book.

The problem in this sentence is that Peter can only begin an activity.
So in understanding it, we must fill in what, exactly, Peter begins to do
with the book — for example, reading it, writing it, etc. This meaning
shift leads to readings such as (2) or (3), in which more material has
been added, as indicated by the boxes. This process of adding material
is called reinterpretation.

(2) Fz.book(x) A begin(peter, )
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(3) Fz.book(x) A begin(peter, x)

Pustejovsky (1995) assumed that the reinterpretation operator is
determined by purely lexical information. Since then it has been noticed
that the information determining the reinterpretation process comes ac-
tually from a variety of source, including context and world knowledge.
This implies that the final decision on a specific reinterpretation oper-
ator can only be made after semantic construction. In an extension to
Pustejovsky’s approach, Lascarides and Copestake (1998) use defaults
which can be overridden after semantic construction to account for
this fact. Egg (2000) noticed that the actual insertion of a reinterpre-
tation operator can be modeled in an elegant, monotonic way within
a framework for semantic underspecification (van Deemter and Peters,
1996; Reyle, 1993; Bos, 1996; Pinkal, 1996; Egg et al., 1998). Instead of
deriving and then destructively changing a fully specific semantic repre-
sentation for a sentence, he changes his semantic construction process to
produce a relazed description of the sentence meaning, which contains
a “gap” at the reinterpretation site. A reinterpretation operator can
then be filled into the gap non-destructively. Such a description could
look roughly as in (4).

(4) 3Fz.book(x) A begin(peter, ... x ...)

It is possible to derive such relaxed descriptions compositionally,
and reinterpretation indeed becomes a monotonic process of making
descriptions more specific. However, relaxation is in general a process
that bears a danger of overgeneration. Roughly speaking, it is possible
that material already present in the description could slip into the gap,
giving the relaxed description unintended readings.

This article is a formal investigation of the relaxation operation
in the framework of the Constraint Language for Lambda Structures
(CLLS) (Egg et al., 1998), where underspecified semantic repre-
sentations are expressed by tree descriptions subsuming dominance
constraints. We define what it means for a relaxation to be safe (the
overgeneration problem is avoided) and open (arbitrary material can
be filled into the gap). Then we develop general techniques for reason-
ing about structural properties of tree descriptions in CLLS — most
notably, chains of fragments — and use these techniques to prove that
every relaxed description produced by the syntax/semantics interface
of a certain toy grammar is open and safe. We believe that this result
can be lift to more serious grammars while using the presented proof
techniques.

Plan of the article. Section 2 introduces tree descriptions in CLLS. In
Section 3, we discuss Egg’s underspecification approach to reinterpre-
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tation and make the overgeneration problem concrete. In Section 4, we
formalize the notions of relaxation, safety, and openness. In Section 5,
we define fragments and chains of fragments and prove some useful
properties of these objects. Section 6 presents the prototypical toy
grammar for deriving relaxed underspecified representations. Finally,
we prove that all relaxations that can be derived by this interface are
safe and open in Section 7.

2. Semantic Underspecification in CLLS

This section introduces the Constraint Language for Lambda Struc-
tures (CLLS) as a formalism for semantic underspecification. Briefly,
the idea of underspecification is that because the number of read-
ings of an ambiguous sentence may grows hyper-exponentially with
the number of ambiguities, it can make sense to derive only a single,
“underspecified” description of the meaning from the syntax and then
to work with this description instead of the readings for as long as
possible. Readings are enumerated only by need.

CLLS (Egg et al., 2000; Egg et al., 1998; Koller et al., 1998) can
be used for the underspecified description of A-terms. Technically, it is
a language of tree descriptions based on dominance constraints, which
are used in various applications throughout computational linguistics
(Marcus et al., 1983; Vijay-Shanker, 1992; Rambow et al., 1995; Gar-
dent and Webber, 1998). Dominance constraints appear, to a varying
degree of explicity, in many frameworks of scope underspecification
(Reyle, 1993; Bos, 1996; Muskens, 1995), and their computational as-
pects are rather well understood (Backofen et al., 1995; Vijay-Shanker
et al., 1995; Koller et al., 1998; Duchier and Niehren, 2000; Koller et al.,
2000). CLLS is interpreted over A-structures, conservative extensions
of tree structures. Below, we will first define A-structures and then
two different ways of describing them: by (conjunctive) logic formulas
and by constraint graphs. Then we give a quick overview about the
application to scope. Finally, we introduce the first-order language over
CLLS, which will turn out later to be useful for talking about CLLS
descriptions.

2.1. LAMBDA STRUCTURES

A )-structure represents a A-term uniquely, up to renaming of bound
variables. It is an ordinary first-order tree structure extended with
a partial A-binding function. A-structures can be drawn as tree-like
graphs, with dashed arrows representing A-binding, as in Figure 1. The
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represents
—

Ax.car(x)

Car

Figure 1. A A-structure and the A-term it represents.

tree structures we consider are based on constructor trees; that is, the
label of a node determines the number of its children. Constructor
trees are basically ground terms over a given signature; for instance, the
constructor tree underlying the A-structure in Figure 1 is lam(carQuvar).

We assume a signature ¥ = {lam, @, var, car,driver, ... } of function
symbols written as f,g. Every function symbol f € X has an arity
ar(f) > 0. We let a,b range over constants — function symbols of arity
0. For describing A-terms, we assume the following function symbols to
belong to X: a unary symbol lam for A-abstraction, the binary symbol
@ for application, and the constant var for occurrences of A-bound
variables.

We define an (unlabeled) tree in the standard way as a directed
graph (V, E) where V is a finite set of nodes u, v and E CV xV a
finite set of edges e. The indegree of each node in V is at most 1; each
tree has exactly one root, i.e. a node with indegree 0. We call a node
with outdegree 0 a leaf of the tree.

A (finite) constructor tree over ¥ is a triple (V, E, L) where (V, E)
is a tree, L : V — X a node labeling and L : E — N an edge labeling,
such that any node u© € V has exactly one outgoing edge with label k
for each 1 < k < ar(L(u)), and no other outgoing edges. The symbol L
is overloaded to serve both as a node and an edge labeling; there will
be no danger of confusion.

Definition 2.1. A (partial) A-structure 7 is a quadruple (V,E,L,\)
consisting of a constructor tree (V,E,L) over ¥ and a partial func-
tion X : L™Y(var) ~ L~'(lam) mapping occurrences of lambda bound
variables to their lambda binder.

We will freely identify the A-structure (V,E,L,)\) with a first-
order structure with domain V and the following relations: binding
Au) = v, dominance <*, and, for each function symbol f € X, labeling.
Dominance and labeling are defined for u,v,u1,... ,u, € V by:

u<*v iff there is a path from u to v in (V, E);
wif(u1,... ,up) iff L(u) = f and L(u,u;) =i for 1 <i < n=ar(f).
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Figure 2. A constraint graph representing a overlap-free constraint.

For illustration, we briefly return to the A-structure for Az.car(z) in
Figure 1.

In this A-structure, the relations u;:@(us, ug), ug<*ugz, and A(us) =
ug hold, among others.

Note that not every var node in a partial A-structure is necessarily
mapped to anything by the binding function. This deviates from the
standard definition of (total) A-structures, where all var nodes must be
bound, but is necessary in order to maintain some intermediate results
in Section 4. However, the underspecified descriptions we will use will
generally enforce that all relevant var nodes have binders. Note further
that trees and A-structures can be defined by specifying the set of nodes
as a “tree domain” — a set of words over the natural numbers. The two
definitions are equivalent, but the graph definition is more convenient
for the purposes of this paper.

2.2. DESCRIPTIONS IN CLLS

CLLS is a language for describing A-structures. For the purposes of
the present article, we confine ourselves to the sublanguage of CLLS
providing dominance, labeling, and A-binding constraints, but note in
passing that the full language also contains parallelism and anaphora
constraints; for details, see (Egg et al., 2000).

Figure 2 shows a description in CLLS, both as a graph and as a
logical formula. A A-structure M satisfies this description iff X denotes
a node in M that is labeled by lam and has a single child, denoted by
Y'; this child dominates (is an ancestor of) another node, denoted by Z,
which is labeled by var and A-bound by the node referred to by X. For
instance, the A-structure in Figure 1 satisfies all of these constraints,
given that X denotes its root, Y its inner node, and Z its right leaf.

We assume an infinite set Vars of (node) variables. The variables
X,Y, Z,U,V,W will range over these node variables. The syntax of the
fragment of CLLS we consider is defined in Figure 3. It provides con-
junctions of atomic constraints for labeling (X:f(Xy,...,X,)), domi-
nance (X <*Y"), lambda binding (A(X)=Y"), and inequality (X#Y). We
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@ u= Xif(Xy,..., Xn)  (fln € 5)
| XY
| AX)=Y
| X#£Y
|

oAy

Figure 8. Syntax of a fragment of CLLS.

freely abbreviate constraints X <*Y A Y<*X by X=Y and X<J*Y A
X #Y by X<tY.

CLLS is interpreted over the class of A-structures, which provide
relations for the interpretations of all relation symbols, in the usual
Tarskian way (see Section 2.5 for more details). Note that the same
notation is used for relation symbols in constraints and the correspond-
ing relations in a A-structure. They can generally be distinguished by
context, as relations are always applied to nodes u whereas relation
symbols are applied to variables X.

2.3. CONSTRAINT GRAPHS

For underspecified descriptions, we will only use overlap-free con-
straints which contain sufficiently many inequalities for expressing that
any two labeled variables denote distinct nodes.

Definition 2.2. A constraint ¢ is called overlap-free iff for any two
distinct labeling constraints X:f(Xq,...,X,) and Y:g(Y1,...,Y,)
occurring in ¢ it holds that X#£Y is in ¢ as well (even if f = g).

For easier readability, we will usually draw overlap-free constraints
as constraint graphs: Figure 2 is an example of a overlap-free constraint
and its graph. The nodes of a constraint graph stand for variables
of the constraint, and the various types of edges stand for labeling,
dominance, and binding constraints. Furthermore, the constraint graph
represents an inequality constraint for each pair of labeled nodes; so it
really stands for an overlap-free constraint. Despite a superficial (and
intended) similarity, it is important to distinguish constraint graphs
from A-structures.

Constraint graphs contain “rigid fragments”, which are trees with
solid edges whose leaves may or may not be labeled. Because the rep-
resented constraint is overlap-free, the variables corresponding to the
inner nodes of two fragments must never be mapped to the same node;
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Figure 4. Semantic representation of a scope ambiguity.

that is, fragments may not overlap. However, an unlabeled leaf of one
fragment may still be mapped to the same node as the root of another.
Fragments will be defined formally in Section 5.

2.4. SCOPE UNDERSPECIFICATION

We now illustrate briefly how CLLS can be used to model a scope
ambiguity, as in the following example.

(5) Every mafia boss attends a meeting.

In one reading of the sentence, all mafia bosses attend the same meet-
ing, while in the other one, there is not necessarily a single meeting
which all of the mafia bosses attend. Under this second reading it would
e.g. be possible that every mafia boss has his own meeting.

Its underspecified semantic representation is given in Figure 4. The
constraint graph contains three rigid fragments: The fragments at the
top represent the two quantifiers “every mafia boss” and “a meeting”,
and the one at the bottom, the verb semantics. Scope ambiguities are
characterized by involving two or more quantifiers whose relative scope
is not fixed. In Figure 4, this is accounted for by imposing the constraint
that both of the quantifier fragments must dominate the third one. As
there can be no upward branching in trees, this enforces that one of the
quantifier fragments has to be above the other in each tree described
by the graph, but the exact ordering is left open.

However, this constraint has not only the two obvious solutions; the
satisfying A-structures could be much larger, as long as they contain
the material required in the constraint. In other words, there might
be nodes in a solution of a constraint ¢ which are not referred to by
any variable of ¢. Note that CLLS differs from most other underspec-
ification formalisms in this respect (Alshawi and Crouch, 1992; Reyle,
1993; Bos, 1996), which is an essential prerequisite for underspecified
reinterpretation as considered in this paper.
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2.5. FIRST-ORDER FORMULAS

CLLS constraints are only conjunctions of atomic constraints. How-
ever, it will be useful later to use arbitrary first-order formulas ®
over these atomic constraints. Their function is to facilitate reasoning
about underspecified semantic representations; they are not used as
underspecified semantic representations themselves, in order to save
unnecessary computational complexity and also because our basic no-
tions of safety and chains (e.g. Lemma 4.7 and thus Proposition 4.8)
depend on the fact that CLLS does not support quantification over
nodes.

The set of (free) node variables of a first-order formula ® over CLLS
constraints is denoted by Var(®). A wvariable assignment into a -
structure (V, E, L, \) is a partial function « : Vars ~» V. We write
Dom(«) for the domain of a. A solution of a formula ® consists of a A-
structure M and a variable assignment « into M with V(®) C Dom(«)
under which ® evaluates to true. We also say that (M, «) satisfies @
and write M, a = @ if (M, «) is a solution of ®. We write ® = &' and
say that @ entails @' if every solution of @ interpreting all variables in
Var(®') is a solution of @'.

Incidentally, we will only use the propositional connectives of
first-order formula, disjunction and negation, but not quantification.
Negation allows to express disjointness between two nodes in a tree
structure, meaning that neither of them dominates the other, by the
following formula X 1Y

X1Y =qof ~X<*Y A Y <*X

3. Underspecified Reinterpretation

We already saw an example of reinterpretation in the introduction,
namely (1). Expressed in A-terms of higher-order logics, which are
the basis of the semantic representation formalism introduced in the
previous chapter, the semantics of (1) should look like (6) for instance.

(6) a(book)(Az.begin(peter, read(peter,z)))

However, traditional semantic construction would rather derive some-
thing like (7).

(7) a(book)(Az.begin(peter, ))

So, what reinterpretation has to do here, intuitively, is to fill in semantic
material that was not present on the surface (read(peter,e) in this
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Figure 5. Relaxed semantic representation of (1)

example) at the location of the type conflict. We call this location
the reinterpretation site, and the additional semantic material, the
reinterpretation operator.

We now describe Egg’s approach to modeling phenomena of this
type by exploiting the underspecification mechanisms introduced in
the previous section. Then we show that the general relaxation oper-
ation underlying this approach may give rise to overgeneration, which
introduces the problem that leads the way for the rest of this paper.

3.1. UNDERSPECIFIED REINTERPRETATION

Recently, Egg (2000) has proposed to describe sentences requiring rein-
terpretation in an underspecified way, thereby avoiding conflicts. His
main idea is to derive sufficiently relazed semantic representations in
which gaps, modeled by dominance edges, are left open at all possible
reinterpretation sites. The actual reinterpretation step simply is further
specialization, i.e instantiation of these relaxation gaps; the approach
assumes that suitable reinterpretation operators can be determined by
some independent process. For illustration, Egg’s semantic construction
applied to (1) derives a relaxed semantic representation that essentially
looks as in Figure 5. The reinterpretation site, where relaxation took
place, is highlighted in this figure by the dashed box.

By introducing a dominance edge at the reinterpretation site, the
semantic representation is made less specific. Figure 5 can be seen as a
description of (7) as well as (6), since the gap in (5) can be eliminated
by identifying the two nodes at its ends.

One advantage of Egg’s approach to reinterpretation is that it is
compatible with an underspecified treatment e.g. of scope in a straight-
forward way. Consider e.g. the following example which contains a scope
ambiguity in addition to a type conflict.
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Figure 6. Relaxed underspecified representation of Example (8).

(8) Every driver of a mafia boss is parked out back.

The (relaxed) semantic representation of (8) is presented in Figure 6.
In reading the constraint graph in Figure 6, it is first of all helpful
to identify its various fragments, most notably the contributions of “a
mafia boss”, “every driver”, “of”, and “be parked out back”. The scope
ambiguity between “a mafia boss” and “every driver” is modeled by re-
quiring that both fragments must dominate the fragment corresponding
to “of”, but leaving their relative position open. Reinterpretation has
to coerce “every driver of a mafia boss” into their vehicles. We can
do this by filling the appropriate reinterpretation operator into the
relaxation gap, i.e. the gap provided by the dominance edge X <* X! in
the description of the verb semantics. An appropriate reinterpretation
operator linking the drivers to their cars is given in Figure 7.

3.2. A PrROBLEM?

There are four dominance edges in the description in Figure 6. Three of
them, namely the ones connecting the “a mafia boss”, “every driver”,
“of”, and “be parked out back” were introduced in order to provide
for a correct modeling of scope ambiguities, i.e. they allow to arrange
the semantic material that was introduced by semantic construction in
different ways into trees. The fourth dominance edge, between X and
X', was introduced by relaxation to make space for the reinterpretation
operator. It is important that only reinterpretation operators that are
newly added to the description should appear inside the gap. In par-
ticular, we do not want solutions where material that was introduced
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Figure 7. The reinterpretation operator for Figure 6.

by semantic construction appears in the relaxation gap as if there was
a scope ambiguity.

This cannot happen in Figure 6 — we say that this description is safe
—, but is this a general feature of relaxation? Unfortunately not, as the
abstract examples in Figure 8 show. Here a relaxation of a constraint
graph has a solution where material already present in the original
constraint appears at the position of the gap. We call this kind of
solution unintended.

The problem is that descriptions may contain material that is freely
floating around (like e.g. the fragments containing the node labeled with
f in Figure 8). In a solution, this material can be mapped to almost
any position where the specification of the constraint leaves a gap open.
So, it could end up in a relaxation gap, which it should not. This is
the potential overgeneration problem of relaxation we mentioned in the
introduction: relaxations can have unintended solutions in addition to
those solutions we really want; that is, not all relaxations are safe.

There are several conceivable ways out of this problem. One would
be to explicitly exclude unintended solutions by adding first-order for-
mulas during relaxation which state that the variables of the unrelaxed
constraint must not be mapped into a region of a tree model that
fills a relaxation gap. This idea has the disadvantage that employing a
more expressive description language (first-order instead of conjunctive
constraints) would increase the complexity of computation involving
underspecified representations. Note, however, that a similar idea has
already been proposed in (Rambow et al., 1995).

Another idea might be that unintended solutions typically violate
type and sort restrictions, and they could be filtered out by excluding
ill-typed solutions. However, this will not always work; and more im-
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Figure 8. Unsafe constraints and their relaxations.

portantly, as the previous discussion has shown, type and sort conflicts
do occur in natural language and do not necessarily lead to exclusion,
but rather to a process of reinterpretation repairing the conflict.

The solution proposed in this article relies on the observation that
those CLLS constraints that actually arise as underspecified semantic
representations have particular properties which ensure that their re-
laxation is safe anyway. That is, although in general relaxation may give
rise to unintended solutions, it never does when used for underspecified
reinterpretation.

4. Relaxation

Now that we have a definition of our underspecification formalism and
an intuition of what “relaxation” is supposed to mean, we make this
notion formally precise. We will define the concepts of safe relaxation
and of open constraints. These concepts are both connected to the
notion of an “intended solution”, which we used informally in the
previous section. We will prove in Section 7 that the relaxations we
use in underspecified reinterpretation are all safe and open.

4.1. CONSTRAINT RELAXATION

Intuitively, relaxation of a constraint means to split a single node of
the corresponding constraint graph in two, connecting the two new
nodes with a dominance edge. In capturing this idea formally, it turns
out that it is cumbersome to define a general relaxation operation
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that works on every possible constraint. Instead, we define what it
means for a constraint to be the relaxation of another constraint. In
Section 7, we then need to show that the “relaxed” constraints that
the syntax/semantics interface produces are really relaxations of the
“unrelaxed” versions.

Definition 4.1 (Relaxation). Let @, ¢’ be constraints and X a vari-
able in . ¢' is called a relaxation of ¢ at X with X! iff ¢’ = X <* X!,
Var(¢') = Var(p) W {X'} and

IX ' AXI=X) H .

This definition captures the idea of a relaxation because it says that
there is some variability for what is in between X and X' in a solution
of ¢'; but assuming that they are equal, every solution of ¢’ must also
be a solution of ¢.

However, relaxations in this sense can misbehave in various patho-
logical ways. We have seen in the previous section how an unsafe
relaxation can allow for material to disappear into the newly opened
gap. Another problem is that by the above definition, ¢ is its own
relaxation — which is certainly counterintuitive. Below, we define two
properties of relaxations — safety and openness — which exclude these
two types of problems.

4.2. SAFETY AND OPENNESS

As we have seen in the previous section, safety is the property which
excludes material specified by a constraint from being mapped into the
relaxation gap. We can define safety as follows:

Definition 4.2 (Safety). Let ¢’ be a relazation of ¢ at X with X'.
¢ is a safe relazation of ¢ at X iff

o ENY<XVY LX VX)),
Y e Var(p)

Another interesting property of a constraint is to be open between
two variables: This means that the tree structure between the deno-
tations of the two variables X and X' is not constrained. Thus, one
can freely fill in arbitrary material at the relaxations site while still
satisfying the constraint. In order to formalize this idea, we need the
notion of a projection.

Definition 4.3 (Projection). Let M = (V, E,L,\) be a A-structure
with nodes u<*ul in V. Let Vi be the set of nodes of M situated strictly
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project
=
at u, ul
/iu\I
1

Figure 9. Projection at u,u’.

between u and u':
V4 = {veV|udv in M and not u'<*v in M}

We define the projection pY;(M) of M at u, ut illustrated in Figure 9
by applying the following consecutive steps to M:

1. Remove all edges whose source is in V.

2. Remove all A\-binding pairs that involve a node in V.
3. Replace the edge (r,u), if it exists, by (r,u').

4. Remove all nodes in V.

Note that p2, (M) is indeed a \-structure since u<*ul. Given a vari-
able assignment o into M and variables X, X' with a(X)<*a(X!)
we define its projection pﬁl(a) to be the wariable assignment into

e(X) (M) which maps, for all Y € Vars,

pa(Xl)
undefined if a(Y) € V;((;((l))\{u}
Pxi(@)(Y) = 4 if oY) = a(X)
a(Y) otherwise

The projection p§, (M, ) of a pair (M, q) satisfying a(X)<*a(X?) is
the pair (p3yh (M), P%i ().

Definition 4.4 (Openness). A constraint ¢ is open between X and
XU iff o = X<1* X! and for each pair (M, ) where a assigns into M:

if px1(M, ) |= ¢ then M, a = o
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Clearly, it is important for a relaxation to be open, but not all
relaxations are. X:a, for instance, is its own relaxation at X with X'
and is not open between X and X'. There is however a certain class
of safe relaxations, which all are open, as expressed by the following
proposition.

Proposition 4.5 (Openness of Safety). Let ¢ be a safe relaxation
at X with X' such that no other constraints in ¢ mentions X and X'
except X <I* X' and X':f(...). Then ¢ is open between X and X'.

Proof. Let (M, a) be a tuple consisting of a A-structure and a variable
assignment, and let p§, (M, ) be a solution of ¢. We have to show
that (M, a) also is a solution of . Because ¢ is safe, we know that
a and p}, () coincide on Var (). By the definition of projection all
atomic constraints of ¢ except for X <1*X! are satisfied by M in the
same way they are satisfied by p§l (M). And X<* X' is of course also
satisfied by (M, a). O

4.3. INTENDED SOLUTIONS

An equivalent characterization of safety and openness can obtained by
specifying intended solution of relaxed constraint. The fact that such
an equivalent definition exists reinforces our confidence into the notion
of open and safe relaxations, even though it is not essential for the
remainder of this article.

Definition 4.6 (Intended Solutions). Let ¢' be a relazation of ¢
at X with X'. A pair (M, a) is called an intended solution of ¢’ iff
a(X)<*a(X') and the projection pX,(M,a) is a solution of .

Lemma 4.7. Let ¢ be a safe relazation of ¢ at X with X'. If (M, a)
is a solution of ¢' then its projection p§, (M, @) solves ¢ as well.

Proof. Let M = (V,E,L,\) and M, a = ¢'. Since Var(¢') = Var(p) &
{X"}, safety yields that p?(a) is defined for all variables in Vars(¢').
Now we can verify that the projection satisfies each atomic constraint
in ¢'. For instance, let Y<*Z be in ¢’ then «(Z) can be reached form

a(Y) via edges in M. Thus, p§l (a)(Z) can be reached from p§l(a)(Y)

in ngé) (M), i.e. pX,(M, ) | Y <*Z. The arguments for labeling and
A-binding constraints are similar. O

Proposition 4.8. All solutions of a safe relazation are intended.
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Fy F F;

X1 o X LYy Xy N

Gl GZ

Figure 10. A chain of fragments.

Proof. Let ¢ be a safe relaxation of ¢ at X with X! and (M,a) a
solution of ¢’. By Lemma 4.7, the projection pﬁl(M,a) solves ¢’ as
well. Trivially, it also solves X = X; and thus ¢ by the equivalence
IXH ' A X'=X) H ¢, i.e (M, a) is an intended solution. O

Proposition 4.9. Every intended solution of an open relazation is
indeed a solution.

Proof. Let ¢' be an open relaxation of ¢ at X with X!, If (M, a) is
an intended solution of ¢’ then its projection p§l (M, a) solves ¢, and

thus 3XY(X=X" A ¢'). Since p§l (@) maps X and X to the same value,
the projection p%l (M, ) also solves ¢'. The openness of ¢’ yields that
(M, a) solves ¢’ as well. O

5. Chains of Fragments

In this section, we introduce chains of rigid fragments. Chains are pro-
totypical substructures of underspecified semantic representations in
CLLS. It will turn out that these representations may be more complex
than a single chain, but that they can be covered by several chains.

A chain is intuitively a construction as in Figure 10, where rigid
fragments (drawn as triangles) are connected via dominance constraints
between unlabeled leaves of the upper fragments and the roots of the
lower fragments. By way of example, reconsider Figure 6 which contains
a chain of length two, whose upper fragments are those corresponding
to a mafia boss and every driver and whose lower fragment corresponds
to the preposition.

Now we make the informal notions of fragments and chains, which
we have used in explanations of constraint graphs all along, precise.
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Fragments in an overlap-free constraint are sets of variables that are
connected by labeling constraints.

Definition 5.1 (Connected Variables). Connectedness in ¢ is the

smallest binary equivalence relation over Var(p) which contains all
pairs (X,Y) such that X:f(...Y ...) in .

Definition 5.2 (Fragments). Let ¢ be an overlap-free constraint. A
fragment of ¢ is a subset F C Var(yp) of variables that are pairwise
connected in . A variable X € F is called a labeled leaf of a fragment
F if ¢ contains X:a for some constant a € ¥ and an unlabeled leaf if
no labeling constraint X:f(...) occurs in ¢ at all. A leaf of F' is either
a labeled or an unlabeled leaf of F'.

We are usually interested in maximal fragments, but will allow non-
maximal ones as well. In the constraint graph, fragments look like parts
of trees. So intuitively, they should have a unique root, and their leaves
should be pairwise disjoint. This is indeed the case:

Lemma 5.3 (Treeness of Fragments). Let ¢ be an overlap-free
constraint, and let F be a fragment of ¢. Then F has the following
properties:

1. There is a unique variable Y € F (which we call its root) such that
wEY<IX forall X € F.

2. For any two different leaves X,Y of F it holds p =X 1LY at F.
We omit the proof, which is straightforward.

Definition 5.4 (Chains). Let ¢ be an overlap-free constraint, and let
F=(F,...,F,) and G = (G1,... ,Gnr_1) be sequences of fragments
in p. We assume that no variable appears in two different fragments; so
these fragments cannot overlap properly. For all i, let X;,Y; be different
unlabeled leaves of F;, and let Z; be the root of G;. Then the pair C =
(F,G) is called a chain in ¢ of length n and with end points X; and
Y, iff foralll <i<n-—1:

© ‘Z Y;<*Z; A Xi+1<]*Zi

If a constraint contains a chain then it entails some very useful
relationships between its variables.

Proposition 5.5 (Relations in Chains). If C is a chain in a con-
straint @ with end point X then all other variables Y of C satisfy:

YEXLYVY<X.
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Proof. The proof is by induction on the length n of the chain C. Let
fragments and variables of C be named as in Definition 5.4. The case n =
1 follows from the treeness of upper fragments (Lemma 5.3). Assume
n > 2 and let X = X; w.lo.g. Since Y1<*Z; A Xo<*Z; € ¢ it follows
that ¢ = Y1<9* X V Xo<*Y;. Let Uy € F; and Uz € Fy be the roots
of their fragments. As fragments of chains cannot overlap properly, it
follows that ¢ | Y1<*Us V Xo<*U;. For the first case, we consider
0 NY1<*Us: If Y € F, UGy then ¢ = V1<*Y A X;1Y; and we are
done. Otherwise, we cancel out GG; and F, and apply the induction
hypothesis. For the second case, we consider ¢ = Xo<1*U;. Again, the
case Y € Fy U G are obvious. Otherwise, we cancel out F; and G;.
The induction hypothesis yields ¢ &= X9 LY VY <*X5. Thus, ¢ E
X1lYVY< X. O

Proposition 5.6 (Disjointness of End Points). If XY are the
end points of a chain in @, then p = X 1Y.

Proof. Proposition 5.5 applied twice (once for each end point) proves:

e EXLY VYJI' X)A (YLX VXIY)

The disjointness of end points holds obviously in all case except for
o NY<*X A X<*Y which is impossible as ¢ = X#Y. O

6. Semantic Construction

Now, we define a toy grammar and a syntax/semantics interface that
produces underspecified semantic representations in CLLS. The cover-
age of the grammar is obviously limited. However, the structure of the
semantic representations derived by it are prototypical for the kind of
structures one will see in representations of natural language semantics.
As a matter of fact, we have implemented an HPSG grammar with a
much wider coverage which produces the same type of constraints. The
syntax/semantics interface produces constraints that may be relaxed
at every variable whose label carries the semantics of a verb. We will
prove in the next section that these relaxations are always open and
safe.

We leave it as a (nontrivial) open problem to generalize our results
further, to classes of grammars and syntax/semantics interfaces. The
main problem in doing so is to find the right abstract properties of the
syntax/semantics interface which ensure safety of relaxations.
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(al) S —» NP VP (a6) VP — VP Adv

(a2) NP — Det N (a7) vP — IV

(a3) N > N (a8) VP — TV NP

(a4) N — N PP (a9) VP — CV to VP

(ab) PP— P NP (a10) v — W if (W,y) € Lex

Figure 11. The grammar

6.1. THE GRAMMAR

The grammar fragment we consider is displayed in Figure 11 (where
IV = intransitive verb; TV = transitive verb; CV = (subject) con-
trol verb). Lexz is a relation between words W and lexical categories
v € {Det, N, IV, TV,CV, Adv} which represents the lexicon. The coverage
of this grammar is limited, but it should be a simple matter to extend
our results to a larger grammar that covers constructions like relative
clauses, sentential complement verbs, and ditransitive verbs. Of course,
any serious NLP system would employ some unification grammar for-
malism, which would then also allow to take care of aspects such as
agreement which we have ignored completely.

6.2. THE SYNTAX/SEMANTICS INTERFACE

The syntax/semantics interface of the grammar associates with each
nonterminal node v of the parse tree a variable X, and a subconstraint
that talks about this variable. The contributions of all these nodes
are then conjoined, and a sufficient number of inequality constraints is
added to make the result overlap-free, i.e. to prevent identification of
labeled nodes in the solution.

The rules by which the subconstraints are introduced are presented
in Figure 12. We take [,., 71 2] to mean that the node v in the syntax
tree is labeled with category «y, and its two daughter nodes v1 and v2 are
labeled with 1 and 7y, respectively. The constraint introduced by such
a rule then imposes a CLLS constraint on the variables X,, X,1, X,9
which are distinguished variables in the subconstraints associated with
v,v1, and v2 respectively.

Some other variables in the constraints are mentioned explicitly as
well, e.g. X,“P° in rule (bl). This is to make their specific functions
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©
lam X scope [,,:vp IV} (g) 4{(\‘/‘\&\ Xargl
(b1) v1 vl v var v1

[:s NP VP] 2

. v2
(b2) ,4(@/’\K v2 Iam; X scope
[V:Np Det m = " XV27X‘7/‘est7‘ ’/ .

[ TV NP 2D

Qe
4
Q \vare X9t
(b3) \ vl
Q v .
bo Q var> X079
[ave CV t0vP] & - : v
. XII2

[V:ﬁ N PP]

(b10)
Vo lam > vy W1 = (W) e X,
I
[, P NP| (gg) w\ ; where v € :{Det,N,Adv, I.V, TV,CV}, (W,7) € Lex,
Q v and §(W) is the semantic content of W
Q \ var xarat
1 var X,‘,"gz (b10") e X,
L o O o
(W) e X},
(b6) Q 9 where v € {IV,TV,CV}, (W,~) € Lez, and (W)
[vevp VP Adv] = .m X is the semantic content of W

Figure 12. The syntax/semantics interface

explicit and facilitate later reference. The variable X,;“”¢ introduced
by rule (bl) is intuitively the scope of the quantifier represented by the
NP.

We exploit this to add appropriate A-binding constraints that cannot
be specified locally in Figure 12 without cluttering up the notation.
Instead, we assume information about subjects and objects of verbs,
which will be available in any more serious grammar formalism. For
the object variables introduced in the rules (b7) to (b9), suppose that
v is a VP node in the parse tree and v/ is the NP node that represents
the subject; then we add the following A-binding constraint:

)\(Xargl) — Xs,cope

Similarly for rule (b5), if ¢/ is the NP node modified by the PP at v
then we add the following A-binding constraint:

)\(Xargl) — Xrlestr
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out_back
var

mafia boss
be_parked o X'

Figure 13. Every driver of a mafia boss is parked out back.

Finally, note how relaxation is compiled into the syntax/semantics
interface. Rules (b10) and (b10’) are the semantic construction rules
for the syntactic rules subsumed under (al0). For categories other than
verbs, we can only apply the rule (b10), which just contributes a vari-
able with the appropriate label. For verbs, however, we have a choice
between application of (b10) and (b10’); (b10’) introduces a dominance
constraint for potential reinterpretation. It is these relaxations that we
must prove open and safe. This choice can be made nondeterministi-
cally. In “real” semantic construction, we will always apply (b10’), that
is, we produce maximally relaxed constraints; but we still need (b10)
so we can formulate the results in Section 7.

Before we come to the proofs that this specific type of reinterpreta-
tion has all the pleasant properties discussed above, we go through an
example to illustrate how semantic construction operates.

To this end, we briefly return to Example (8), whose (relaxed) un-
derspecified semantic representation we showed in Figure 6. Figure 13
relates the semantic representation to the parse tree our grammar
assigns to this sentence. The dotted arrows go from node v in the
parse tree to the corresponding node X, in the semantic representation,
indicating which part of the constraint is the semantic contribution of
node v. The dotted arrows are furthermore labeled with the rules of the
syntax/semantics interface that were used. For the top most NP node
e.g., rule (b2) introduces only a labeling constraint. Its first daughter
labeled with Det only adds the node label every (rule (b10)). Its second
daughter, labeled with N, then introduces a bigger fragment, the root
of which is labeled by lam (rule (b4)).
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7. Correctness of Underspecified Reinterpretation

In this section, we put all the pieces we have assembled throughout
the paper together. We identify a class of constraints with particular
structural properties that efficiently supports proving safety of a certain
relaxation. This structure depends heavily on the notion of chains,
which we presented in Section 5.

To illustrate the use of coverings, we apply them first to two partic-
ular relaxed semantic representations, showing that these relaxations
are safe. Then we generalize these results to any output of the syn-
tax/semantics interface and demonstrate a strategy for proving that a
syntax/semantics interface never produces unsafe relaxations.

7.1. COVERING CONSTRAINTS
We start by defining what it means for a constraint to be covered.

Definition 7.1 (Covering). Let ¢ be an overlap-free constraint, let
O be a set of fragments in @. We call O is a covering of ¢ for X,Y
iff Var(o) = U{F|F € O} and for each fragment F € O one of the
following holds:

1. either Y dominates the root U of F, i.e. ¢ =Y <*U,

2. or there is a chain C with fragments from O including F' such that
some end point Z of C dominates X, i.e. p = Z<1*X,

3. or there is a chain C in ¢ with fragments of O then one of the end
points dominates X and the other one the root of F'.

Now, we prove a property of coverings, which make them a very
interesting and convenient structure for our purposes.

Proposition 7.2 (Safety of Coverings). Let ¢ be an overlap-free
constraint with covering O for X,Y. Then, for all Z € Var(p):

YEZICXVZIXVYQZ

Proof. Every variable Z € Var(y) belongs to a fragment F' € O, such
that one of the conditions of Definition 7.1 is satisfied. Let U be the
root of F'.

1. ¢ E Y<*U and therefore holds Y <*Z as well.

2. Z belongs to a chain C and an end point of C dominates X. So we
know from Proposition 5.5, that o E X L ZV Z<*X.
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Q lam

a town \ every

Q 111

on ¢ X! [VIL]

Figure 14. Every VIP of a town expects to be on every guest list.

3. Z is dominated by one end point of a chain and X by the other.
From Proposition 5.6 we know that these two end point must be
disjoint and therefore X 1 Z also holds.

O

We now illustrate by means of two examples, how coverings can be
used to show the safety of a relaxation. We start with the example of the
previous section (Figure 13). To show that this constraint is actually
safe, we have to prove that every variable in the constraint must either
dominate X, be disjoint from X, or be dominated by X*. To this end,
we have to find a covering of the constraint for X, X!, as defined in
Definition 7.1. This will then give us the desired result by Proposition
7.2. Fragment V, containing only X' is easy - it is if course dominated
by itself. Fragments I, 11, and I1I form a chain of length two and an
end point of this chain dominates X. This leaves only fragment IV
which can be seen as a chains of length one, and since X is a leaf of
this fragment, X is of course dominated by an end point.

Admittedly, the structure of this example is very simple: it is more or
less one chain with an extra fragment dangling from one of the outer
connection points. As an example for a more complex structure the
grammar fragment we presented can handle control verbs (rules (a9),
(b9)). Consider for example the following example:

(9) Every VIP of a town expects to be on every guest list.

all.tex; 15/05/2000; 2:45; p.23



24 Alexander Koller, Joachim Niehren, Kristina Striegnitz

AN A A

relaxation site =

A& VII

relaxation site =

AN

Figure 15. Schematic view of the Example.

We want to be able to reinterpret this sentence because only the names
of the VIPs will be on the guest lists. The (maximally relaxed) un-
derspecified semantic representation derived by the syntax/semantics
interface is shown in Figure 14. To portray the structure more clearly,
we have given a schematic representation in Figure 15. Note that there
are two relaxation gaps in this example. To show that the constraint
is safe we have to prove that every variable in the constraint must
either dominate X, be disjoint from X, or be dominated by X’ and
that the same holds with respect to Y and Y'. Again we will use
appropriate coverings from which we can draw the desired conclusions
by Proposition 7.2.

For the relaxation gap between nodes X and X', we will employ one
chain of length two, with upper fragments I, IT and lower fragment IV.
Furthermore we need three chains of length one consisting of fragment
111, V,and VII respectively. Note that the one consisting of fragment
V also does the covering for fragment VI. X! again dominates itself,
so that we do not have to worry about fragment VIII.

7.2. STRUCTURE OF THE CONSTRAINTS

The constraints that the syntax/semantics interface can generate are
of a specific form, specified by the following theorem.

Theorem 7.3 (Structure of the Constraints). Let ¢’ be a con-
straint that we have obtained from the syntaz/semantics interface by
applying the construction rule (b10°) for a certain verb node v, and that
@ 1is the constraint that we obtain from the same sentence by applying
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Figure 16. Output of the syntax/semantics interface: schematic view

the same construction rules everywhere, except for the node v, where
we apply (b10). Then, there is a covering O of ¢ for X, X!.

For the most part, the proof is only a precise formulation of the
fact that the structure of a generated constraint generally looks as in
Figure 16. We will not go into most parts of this proof, but one of the
most interesting parts is the proof that the semantic contribution of a
noun phrase is a chain whose length is the number of NP nodes in the
parse tree of that noun phrase.

Proposition 7.4. Let T be the parse tree from which we constructed
¢'. Furthermore, let t be a subtree of T whose Toot is labeled with NP, let
n be the number of NP nodes in t, and let @; be the conjunction of the
constraints corresponding to the nodes of t. Then there is a singleton
covering {C} of i, where C is a chain of length n.

Proof. By induction over n.

n = 1. In this case, t has the form NP(Det (W) N(N(W>))), where W1
and Wy are words. As we can easily see from the rules (b2) and (b3),
the resulting constraint ¢; is a single fragment and the claim is true
with C being a chain of length 1.

n—1— n. Let ¢ be the largest proper subtree of ¢ whose root is
labeled with NP and let ¢y be the contribution of #'. Note that ¢t =
NP(Det (Wy)N(N(W7) PP(P(W3) t'))), where Wy and W5 are again words,
and ' contains n — 1 NP nodes.
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By the induction hypothesis there is a singleton covering {C'} of ¢y,
such that C' = ((F,... ,F}_1),(G},... .Gl _5)).

According to the syntax/semantics interface, we obtain ¢; from @y
by applications of the rules (b2), (b4), and (b5). These rules introduce
two new fragments; let Fy be the fragment consisting of the contribu-
tions of rules (b2) and (b4), and let Gy be the fragment introduced by
rule (b5). Furthermore, rule (b5) extends fragment F| to a fragment
Fy which contains a new leaf, namely the scope. Finally, there are
dominance constraints, demanding that the root of Gy be dominated
by the new leaf of fragment F) as well as a leaf of fragment Fj.

This means that (Fy, Fy, F3,... ,F!_;) and (Go,GY, ... ,G.,_,) form
a chain of length n in ¢ containing all variables of ¢;. Hence, this chain
forms a singleton covering of ;. O

7.3. SAFE, OPEN RELAXATION

Now, the proof that all relaxed constraints derived by our syn-
tax/semantics interface are safe and open relaxations of their unrelaxed
counterparts, becomes quite simple.

Assume that ¢ and ¢’ are as defined in Theorem 7.3. First of all, ¢’
is really a relaxation of ¢ at X, with X’. The two constraints are equal,
except for the constraints for the variables X, and X!. By adding an
equality constraint for these two variables to ¢’, we clearly obtain a
constraint which is equivalent to ¢.

Safety of the relaxation follows by Proposition 7.2 directly from the
fact that ¢’ has a covering for X,,, X\. Openness of ¢/ between X, X/,
follows from the fact that ¢ is safe at X, with X! by Proposition 4.5,
since we know from the only constraints concerning X, and X!, that the
syntax/semantics interface adds are the dominance constraint between
X, and X! and a labeling constraint for X.

8. Conclusion

Type and sort conflicts in semantics have to be resolved by reinterpreta-
tion in the presence of underspecification. This article investigates the
formal foundations of underspecified reinterpretation in the framework
CLLS. Its basic operation is the relazation operation. It makes under-
specified semantic representations even less specific, thereby making the
introduction of additional material, such as reinterpretation operators,
possible.

We identified a structural danger of overgeneration inherent to the
relaxation of underspecified semantic representations. We formalized
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two wellness properties of relaxation, which ensure that structural over-
generation cannot arise: openness (arbitrary reinterpretation operators
can be filled into the relaxation site) and safety (only reinterpretation
operators can slip into relaxation gaps). We then introduced chains of
fragments in tree descriptions and applied these structures to prove
safety and openness for all CLLS relaxed descriptions produced by the
syntax/semantics interface of a prototypical toy grammar. This result
manifests our believe that while relaxation in general may cause prob-
lems, none of these problems occur in its application to underspecified
reinterpretation.
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