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Abstract

We presentinenginefor text adventures-computer
gameswith which the playerinteractsusing natu-
ral language. The systememplg/s currentmeth-
odsfrom computationalinguisticsandan efficient
inferencesystemfor descriptionlogic to make the
interactionmore natural. The inferencesystemis

especiallyusefulin the linguistic modulesdealing
with referenceresolutionand generation and we

shav how we useit to rank different readingsin

the caseof referentialand syntacticambiguities. It

turns out that the players utterancesare naturally
restrictedn thegamescenariowhich simplifiesthe
languageprocessingask.

1 Intr oduction

Text adwenturesare computergameswith which
the playerinteractsvia a naturallanguagedialogue.
Texts describethe gameworld andhow it evolves,
andthe playercanmanipulateobjectsin this game
world by typing in commandsFig. 1 shavs asam-
ple interaction. Text adwentureswere very popu-
lar andcommerciallysuccessfuin the eighties,but
have goneout of fashionsincethen— mostly be-
causethe parsersvereratherlimited andforcedthe
userinto very restrictedformsof interaction.

We describean enginefor text adwenturesthat
attemptsto overcometheselimitations by using
currentmethodsfrom computationalinguisticsfor
processingthe naturallanguageinput and output,
anda state-of-the-arinferencesystembasedn de-
scriptionlogic (DL) to representhe dynamicstate
of thegameworld andwhatthe playerknows about
it. TheDL proveris usedin all language-procesgin
modulesexceptfor parsingandsurfacerealization,
andsupportgheinferencesve needvery well.

This shaws in particularin the modulesfor the
resolutionand generatiorof referring expressions.
By keepingtrack of the true state of the world
andthe players knowledgein separatknowledge
baseswe canevaluatedefinitedescriptionswith re-
spectto whatthe playerknows. In generationsuch

sh. de

inferencesallow us to producesmallerwhile still
sufiiciently informative references.

Another interestingaspectwhich we discussin
this paperis the treatmenbf syntacticandreferen-
tial ambiguitieghatcomeupin understandingnput
sentences-ere,too, the playerknowledgerestricts
thewayin whichtheinputshouldbeinterpretecand
guidesthe resolutionprocess. We useinferences
aboutthe playerknowledgeto rule out inconsistent
analysesandpragmaticheuristicsto possiblyselect
thepreferredone.

Playersof a text adwventureare effectively situ-
atedin a gameworld and have to accomplisha
specifictask,which severelyrestrictsthe utterances
they will naturallyproduce.For example,they will
typically only refer to objectsthey could “see” in
the simulatedworld. This simplifiesthe language
processindgaskstremendously The scenarioof the
gamecanbefreelyspecifiedandtailoredto different
applicationsandlevels of compleity. Along with
the modularity of our implementation this makes
our systeman interestingtestbedfor evaluating
more sophisticatedNLP modules,which alsohave
accesso theinferencenfrastructure Thesamerea-
sonmakesit usefulasa teachingtool; in fact, our
implementatiorwascreatedasan adwancedproject
for students.

Plan of the paper. Wewill startwith anoverview
over the architectureof our systemin Section2.
Section3 will give a brief introductionto descrip-
tion logics,andthendescribeghe knowledgebases
we use. We will discusshow they interactwith the
linguistic modulesin Section4, which focuseson
the resolutionand generationof referring expres-
sions. Section5 dealswith the resolutionof am-
biguitiesin the playerinput. Finally, Section6 con-
cludesandpointsto furtherresearch.

2 Architecture

Thegenerakrchitectureof thegameengine shavn
in Fig. 2, consistsof a number of language-
processingnodules(dravn as ellipses),which in-



Observation Lounge

This is where the station staff and visitors come to relax. There are a lot of tables
and chairs here, a large observation window, and a plush carpet. In the corner you can
see an AstroCola  dispenser. A tube leads up to the station’s main corridor.

> put my galakmid coin into the dispenser

Click.

The dispenser display now reads "Credit = 1.00"

> push diet astrocola button

You hear a rumbling noise in the dispenser, but nothing appears in the tray.

> kick dispenser

A can drops into the tray. Amazing! The oldest trick in the book, and it

actually worked.

Figurel: An exampleinteractionwith atext adwenture takenfrom (Ledgard,1999).

Reference

Generation
Content
Determination

I I Y

A-Box: User Knowledge

_| Discourse
Model

A-Box: World Model

| T-Box |

Figure2: Thearchitecture.

terfacewith knowledgebasesndadiscoursanodel
(dravn as rectangles). There are two separate
knowledgebaseswhich sharea setof commondef-
initions: Onerepresentshe true stateof the world
in aworld model,the otherkeepstrack of whatthe
player knows aboutthe world. Solid arrowns indi-
catethe generalflow of information,dashecdarravs
indicateaccesdo theknowledgebases.

Theusers input s first parsedusingan efficient
parserfor dependenc grammar(Duchierand De-
busmann2001).Next, referringexpressionsarere-
solvedto individualsin the gameworld. Theresult
is agroundtermor a sequencef groundtermsthat
indicatesthe action(s)the userwantsto take. The
Actionsmodulelooksuptheseactionsin adatabase
(wherethey arespecifiedn a STRIPS-like format),
checkswvhethertheaction’s preconditiongremetin
theworld, and,if yes,updateghe world statewith
the effectsof theaction.

The actioncanalso specify effectson the users
knowledge. This information is further enriched
by the ContentDeterminatiormodule;for example,
this module computesdetaileddescriptionsof ob-
jects the player wantsto look at. The Reference
Generationmodule translatesthe internal names
of individualsinto descriptionghat canbe verbal-
ized. In the last step,an efficient realizationmod-
ule (Koller and Striegnitz, 2002) builds the output
sentenceaccordingto a TAG grammar Theplayer
knowledgeis updatedafter ReferenceGeneration
whenthe contentof the games responseincluding
the new informationcarriede.g. by indefinite NPs,
is fully established.

If anerroroccursatary stagege.g.becausa pre-
conditionof theactionfails, anerrormessagespec-
ifying the reasonsfor the failure is generatedoy
using the normal generationtrack (ContentDeter
mination,ReferencésenerationRealization)of the
game.

The systemis implementedn the programming
languageMozart (Mozart Consortium,1999) and
provides an interface to the DL reasoningsystem
RACER (Haarsle andMoller, 2001),whichis used
for maintingandaccessinghe knowledgebases.

3 The World Model

Now we will look at the way that the stateof the
world is representedn the game, which will be
importantin the languageprocessingnodulesde-
scribedn Sectiongt and5. Wewill firstgiveashort
overview of descriptionogic (DL) andthetheorem
prover we useandthendiscusssomeaspectof the
world modelin moredetail.



3.1 Description Logic

Descriptionlogic (DL) is a family of logicsin the
tradition of knowledge representatiorformalisms
suchasKL-ONE (WoodsandSchmolze1992).DL
is a fragmentof first-orderlogic which only allows
unary and binary predicates(concepts and roles)
and only very restrictedquantification. A knowl-
edgebaseconsistsof a T-Box, which containsax-
ioms relating the conceptsand roles, and one or
more A-Boxes, which statethat individuals belong
to certainconceptsor arerelatedby certainroles.

Theoremprovers for descriptionlogics support
a rangeof different reasoningtasks. Among the
mostcommonare consistency checking,subsump-
tion checking, and instance and relation check-
ing. Consisteng checksdecidewhetheracombina-
tion of T-Box and A-Box canbe satisfiedby some
model, subsumptionis to decideof two concepts
whetherall individuals that belongto one concept
mustnecessarilypelongto anotherandinstanceand
relationcheckingtestwhetheranindividual belongs
to a certainconceptand whethera certainrelation
holdsbetweera pair of individuals,respeciiely. In
additionto thesebasicreasoningasks,description
logic systemsusually also provide someretrieval
functionality which e.g.allows to computeall con-
ceptsthata givenindividual belongsto or all indi-
vidualsthatbelongto a givenconcept.

Thereis awiderangeof differentdescriptioriog-
ics todaywhich adddifferentextensionsto a com-
moncore. Of course the moreexpressie theseex-
tensionsbecome the more comple the reasoning
problemsare. “Traditional” DL systemshave con-
centratednveryweaklogicswith simplereasoning
tasks. In the lastfew years,however, nev systems
suchasFaCT (Horrockset al., 1999)and RACER
(Haarsle andMoller, 2001) have shawn thatit is
possibleto achiere surprisinglygood average-case
performancdor very expressie (but still decidable)
logics. In this paper we emplg/ the RACER sys-
tem, mainly becausét allows for A-Box inferences.

3.2 The World Model

The T-Box we usein the gamespecifiesthe con-
ceptsandrolesin theworld anddefinessomeuseful
comple conceptse.g.theconcepbf all objectsthe
playercansee.This T-Box is sharedby two differ-
entA-Boxesrepresentinghe stateof theworld and
whatthe playerknows aboutit respectrely.

The playerA-Box will typically be a sub-partof
the gameA-Box becausehe playerwill not have

explored the world completelyand will therefore
not have encountere@ll individualsor know about
all of their properties.Sometimeshowever, it may
alsobe usefulto deliberatelyhide effects of anac-
tion from the user e.qg. if pushinga button hasan
effectin aroomthatthe playercannotsee. In this
casetheplayerA-Box cancontaininformationthat
is inconsistentvith theworld A-Box.

A fragmentof the A-Box describingthe stateof
theworld is shavn in Fig. 3; Fig. 4 givesagraphical
representationThe T-Box specifiesthat the world
is partitionedinto threeparts: rooms,objects,and
players.Theindividual ‘myself’ istheonly instance
that we ever define of the concept'player’. Indi-
vidualsareconnectedo their locations(i.e. rooms,
containerobjects,or players)via the ‘has-location’
role; the A-Box also specifieswhatkind of object
anindividual is (e.g.‘apple’) andwhatpropertiest
has(‘red’). The T-Box thencontainsaxiomssuch
as‘apple C object, ‘red C colour, etc.,which es-
tablishataxonomyamongconcepts.

Thesedefinitionsallow us to add axiomsto the
T-Box which definemore complex concepts.One
is the concept'here’, which containsthe room in
which the player currentlyis — thatis, every indi-
vidual which canbe reachedover a ‘has-location’
role from aplayerobiject.

here= Jhas-location.player

In this definition,‘has-location !’ istheinverserole
of the role ‘has-location, i.e. it links a and b iff
‘has-location links b anda. Inverserolesareoneof
the constructionsavailable in more expressie de-
scriptionlogics. The quantificationbuilds a more
comple conceptirom a conceptandarole: 3R.C
is the conceptcontainingall individuals which are
linkedvia an R role to someindividualin C. In the
examplein Fig. 3, ‘here’ denoteghe singletonset
{kitchen}.

Another useful conceptis ‘accessible’, which
containsall individuals which the player can ma-
nipulate.

Vhas-locatiorhereL
Vhas-locationaccessible1 open

accessible =

All objectsin the sameroom as the player are
accessiblejf suchan objectis an opencontainer
its contentsare also accessible. The T-Box con-
tains axiomsthat expressthat someconceptde.g.
‘table’, ‘bowl’, and ‘player’) containonly ‘open’



room(kitchen) player(myself)
table(tl) apple(al)
apple(a2) worm(w1)
red(al) green(a2)
bowl(b1) bowl(b2)

has-location(t1kitchen)
has-location(b2kitchen)
has-location(aZitchen)
has-location(myselkitchen)

has-location(b1t1)
has-location(alh?2)
has-detail(a2,w1)

Figure3: A fragmentof aworld A-Box.

objects. This permitsaccesdo the players inven-
tory. In the simplescenaricabore, ‘accessible de-
notesthe set {myself,t1,al,a2,b1,b2}. Finally,
we candefinethe conceptvisible’ in a similarway
as‘accessible The definition is a bit more com-
plex, including moreindividuals,andis intendecto
denoteall individualsthatthe playercan“see” from
his positionin the gameworld.

4 Referring Expressions

Theinteractionbetweerthegameandtheplayerre-
volvesaroundperformingactionson objectsin the
gameworld andthe effectsthat theseactionshave
on the objects. This meansthat the resolutionand
generatiorof referring expressionswhich identify
thoseobjectsto theuser arecentraltasksin our ap-
plication.

Our implementationillustrates how useful the
availability of an inferencesystemas provided by
RACERto accessheworld modelis, oncesuchan
infrastructureis available. The inferenceengineis
complementedby a simplediscoursenodel,which
keepdrackof availablereferents.

4.1 The DiscourseModel

Our discoursemodel (DM) is basedon Strubes
(1998) saliencelist approach,due to its simplic-
ity. The DM is a datastructurethat storesan or-
deredlist of the mostsalientdiscourseentitiesac-
cording to their “information status”and text po-
sition and provides methodsfor retrieving andin-
sertingelementsFollowing Strube hearer-old dis-
courseentities(which includedefinites)areranked

!Remembetthat “seeing” in our applicationdoesnot in-
volve ary graphical representations. The player acquires
knowledgesaboutthe world only throughthe textual output
generatedy the gameengine. This allows usto simplify the
DL modelingof the world becauseve don't have to specify
all (e.g. spatial)relationsthatwould implicitly be presenin a
picture.
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Figure4: ExampleScenario

higherin the DM (i.e. aremoreavailablefor refer
ence)thanhearer-new discourseentities(including
indefinites). Within thesecatayories,elementsare
sortedaccordingto their positionin the currently
processedsentence. For example, the ranking of
discourseentitiesfor the sentencdaake a banana,
the red apple, and the green apple would look as
follows:

[red apple < green apple],q < [bananalpey

The DM is huilt incrementallyand updatedaf-
ter eachinput sentence Updatingremovesall dis-
courseentitiesfrom the DM which arenotrealized
in thecurrentutteranceThatis, thereis anassump-
tion that referentsmentionedn the previous utter
ancearemuchmoresalientthanolderones.

4.2 ResolvingReferring Expressions

The task of the resolutionmoduleis to map def-
inite and indefinite noun phrasesand pronounsto
individualsin the world. This taskis simplifiedin
the adwenturesetting by the fact that the commu-
nication is situatedin a sense: Playerswill typi-
cally only referto objectswhich they can“see” in
the virtual environment,asmodeledby the concept
‘visible’ above. Furthermorethey shouldnot re-
fer to objectsthey havent seenyet. Hence,we
performall RACER gqueriesin this sectionon the
playerknowledgeA-Box, avoiding unintendedam-
biguities when the players expressionwould e.g.
not refer uniquely with respectto the true stateof
theworld.

Theresolutionof a definite descriptionmeango
find auniqueentity which, accordingo theplayers
knowledge,is visible and matcheghe description.
To computesuchanentity, we constructa DL con-
cept expressioncorrespondingto the description
andthensenda queryto RACER askingfor all in-
stancesof this concept. In the caseof the apple,
for instance we would retrieve all instancef the



concept
applen visible

from the player A-Box. The queryconceptfor the
apple with the wormwould be

appler1 (3has-detailvorm) 1 visible.

If thisyieldsonly oneentity ({a2} for the applewith
the worm for the A-Box in Fig. 3), the reference
hasbeenunambiguousand we are done. It may,
however, alsobethe casethat morethanoneentity
isreturnede.g.thequeryfor the applewouldreturn
the set{al,a2. We will shav in the next section
how we dealwith this kind of ambiguity We reject
input sentencesvith an error messagendicatinga
failed referencaf we cannotresole an expression
atall, i.e. whenno objectin the playerknowledge
matcheghedescription.

We resole indefinite NPs,suchasan apple, by
gueryingthe playerknowledgein the sameway as
describedabore for definites.Unlike in the definite
case however, we do not requireuniquereference.
Instead,we assumethat the player did not have a
particularobjectin mind andarbitrarily chooseone
of thepossiblereferents.Thereply of thegamewill
automaticallyinform the playerwhich onewascho-
sen,asauniquedefinitereferencewill begenerated
(seebelaw).

Pronounsaresimply resohedto themostsalient
entity in the DM thatmatchedheir agreementon-
straints. The restrictionsour grammarimposes
on the player input (no embeddingsno reflexive
pronouns)allow usto analyzesentencesncluding
intra-sententiahnaphordik e take the apple and eat
it. Theincrementakonstructiorof theDM ensures
that by the time we encounterthe pronounit, the
apple hasalreadybeenprocesse@ndcansene asa
possibleantecedent.

4.3 Generating Referring Expressions

The converse task occurswhen we generatethe
feedbackto shaw to the player: It is necessaryo
constructdescriptionsof individuals in the game
world thatenablethe playerto identify these.

This task is quite simple for objectswhich are
new to theplayer In thiscasewe generat@anindef-
inite NP containingthetypeand(if it hasone)color
of the object,asin the bowl contains a red apple.
We useRACER's retrieval functionality to extract
thisinformationfrom theknowledgebase.

To refer to an objectthat the playeralreadyhas
encounteredwe try to constructa definitedescrip-

tion that, given the player knowledge, uniquely
identifiesthis object. For this purposewve useavari-

ant of Dale and Reiters (1995) incrementalalgo-

rithm, extendedto dealwith relationsbetweenob-

jects(Dale andHaddock,1991). The propertiesof

thetamgetreferentarelooked atin somepredefined
order (e.qg.first its type, thenits color, its location,

partsit may have, ...). A propertyis addedto the

descriptionif at leastone other object (a distrac-
tor) is excludedfrom it becausét doesnt sharethis

property Thisis doneuntil thedescriptioruniquely
identifiesthetametreferent.

The algorithmusesRACER’s reasoningand re-
trieval functionality to accesghe relevantinforma-
tion aboutthe context, which includede.g.comput-
ing the propertiesof the tamget referentand find-
ing the distractinginstances Assumingwe wantto
refer to entity al in the A-Box in Fig. 3 e.g.,we
first have to retrieve all conceptsand roles of al
from the player A-Box. This givesus {apple(al)
red(al) has-location(al,b}) Aswehaveto have at
leastonepropertyspecifyingthetype of al, we use
RACER’s subsumptiorchecksto extract all those
propertieghat matchthis requirementjn this case,
‘apple. Thenwe retrieve all instancesf the con-
cept'apple to determinghesetof distractoravhich
is {al a2}. Hence,'appl€ aloneis not enoughto
uniquelyidentify al. So, we considerthe apples
color. Again using subsumptiorchecks,we filter
the colorsfrom the propertiesof al (i.e. ‘red’) and
thenretrieve all instancedelongingto the concept
applenredto checkwhetherandhow the setof dis-
tractorsgetsreducedby addingthis property This
concephasonly onememberin theexample,sowe
generatehe expressiorthe red apple.

5 Ambiguity Resolution

Theotheraspecbf thegameenginewhichwe want
to highlight hereis how we deal with referential
and syntacticambiguity We handlethe former by
a combinationof inferenceand discoursenforma-
tion, and the latter by taking psycholinguisticajt
motivatedpreferencemto account.

5.1 ResolvingReferential Ambiguities

When the techniquesfor referenceresolutionde-
scribedin the previous sectionare not ableto map
adefinitedescriptionto a singleentity in the player
knowledge, the resolutionmodulereturnsa set of
possiblereferents. We thentry to narrawv this set
down in two steps.



First, we filter out individuals which are com-
pletely unsalientaccordingto the discoursemodel.
In our (simplified) model, theseare all individuals
that havent beenmentionedin the previous sen-
tence. This heuristicpermitsthe gameto dealwith
the following dialogue,asthe red but not the green
appleis still accessiblén thefinal turn,andis there-
fore choserasthe patientof the ‘eat’ action.

Game:
Player:
Game:
Player:
Game:

...redapple...greenapple.
Take theredapple.

You have theredapple.
Eatthe apple.

You eattheredapple.

If this narravs down the possiblereferentdo just
one,we aredone.Otherwise-i.e. if severalor none
of thereferentaverementionedn the previoussen-
tence—, we checkwhetherthe players knowledge
rulesout someof them. Therationaleis thatanin-
telligent playerwould not try to performan action
on an objecton which sheknows it cannotbe per
formed.

Assume, by way of example, that the player
knows aboutthe worm in the greenapple. This
violates a preconditionof the ‘eat’ action for ap-
ples. Thusif both appleswere equally salient,we
would readeat the apple aseat the red apple. We
cantestif acombinationof referentdor thevarious
referringexpression®f a sentenceviolatesprecon-
ditions by first instantiatingthe appropriateaction
with thesereferents. Then we independentlyadd
eachinstantiategreconditionto freshcopiesof the
playerknowledge A-Box andtestthemfor consis-
teng. If oneof the A-Boxesbecomesnconsistent,
we concludehattheplayerknows this precondition
wouldfail, andconcludehatthisis nottheintended
combinationof referents.

If neitherof theseheuristicsmanageso pick out
auniqueentity, we considerthe definitedescription
to be truly ambiguousandreturnan error message
to theuser indicatingthe ambiguity

5.2 ResolvingSyntactic Ambiguities

Anotherclassof ambiguitiesvhichwe considerare
syntacticambiguities,especiallyof PP attachment.
We try to resole them, too, by taking referential
informationinto account.

In the simplestcase the referringexpressionsn
someof the syntacticreadingshave no possibleref-
erentin theplayerA-Box atall. If this happenswe
filter thesereadingsout andonly continuewith the
others(Schuley 2001). For example,the sentence

unlock the toolbox with the key is ambiguous.In a
scenariowherethereis atoolboxanda key, but the
key is notattachedo thetoolbox,resolutionfails for

oneof theanalysesandtherebyresohesthesyntac-
tic ambiguity

If morethanone syntacticreadingsurvivesthis
first test, we perform the same computationsas
abovetofilter outpossiblereferentsvhichareeither
unsalientor violate the players knowledge. Some-
times,only onesyntacticreadingwill have arefer
entin this narraver senseijn thiscasewe aredone.

Otherwisej.e. if morethanonesyntacticreading
hasreferentswe remove thosereadingswhich are
referentiallyambiguous. Consideronce more the
examplescenariodepictedin Fig. 4. The sentence
put the applein the bowl on the table hastwo differ-
entsyntacticanalysesin thefirst, the bowl on the
table is the tamget of the put actionwhereasn the
second,n the bowl modifiesthe apple. Now, note
thatin thefirstreadingwewill gettwo possibleref-
erentsfor the apple, whereadn the secondreading
the applein the bowl is unique.In casedik e thiswe
pick outthereadingwhich only includesuniqueref-
erencegreading? in thepresentxample).Thisap-
proachassumetshatthe playersarecooperatie and
try to referunambiguouslylt is furthermoresimilar
to what peopleseemto do. Psycholinguisticeye-
tracking studies(Chamberset al., 2000) indicate
thatpeoplepreferinterpretationsvith unambiguous
references:subjectswho are facedwith scenarios
similar to Fig. 4 andhearthe sentenceut the ap-
plein the bowl on the table do notlook atthe bowl
onthetableatall but only at the applein the bowl
(whichis unique)andthetable.

At this point, therecanstill bemorethanonesyn-
tacticreadingleft; if so,all of thesewill have unam-
biguous,uniquereferentsIn sucha casewe cannot
decidewhich syntacticreadingthe player meant,
andasktheplayerto givethegamealessambiguous
command.

6 Conclusionand Outlook

We have describedan enginefor text adwentures
which usestechniquegrom computationalinguis-
ticsto malke theinteractionwith thegamemorenat-
ural. The input is analyzedusing a dependenc
parserand a simple referenceresolution module,
and the outputis producedby a small generation
system. Information about the world and about
the players knowledgeis representedn descrip-
tion logic knowledge basesand accessedhrough



a state-of-the-arinferencesystem. Most modules
usetheinferencecomponentto illustrateits useful-
nesswe have looked morecloselyattheresolution
andgeneratiornof referringexpressionsandat the
resolutionof referentialandsyntacticambiguities.

Preliminaryexperimentsndicatethatthe perfor
manceof our gameengineis goodenoughfor flu-
ent gameplay The constraintbaseddependenc
parserwe usefor parsingand generationachie/es
very good averagecaseruntimeson the grammars
and inputs we use. More interestingly the infer-
encesystemalsoperformsvery well. With the cur
rentknowvledgebasesteasoningpntheworld model
anduserknowledgetakes 546msperturn on aver
age(with ameanof 39 queriesperturn). How well
this performancescalesto biggergameworlds re-
mainsto be seen. Onelessonwe take from this is
thatthe recentprogressn optimizinginferenceen-
ginesfor expressie descriptionlogicsis beginning
to make themusefulfor applications.

All the language-processingodulesin our sys-
temarerathersimplistic. We cangetaway with this
becausdhe utteranceshat playersseemto wantto
producein this settingarerestricted.e.g. to objects
in thesamesimulated‘location” astheplayer (The
preciseextentof this, of courseremainsto be eval-
uated.) Theresultis a systemwhich exceeddradi-
tionaltext adventuresy farin theflexibility offered
to theuser

Unlike the input, the outputthat our gamegen-
eratesis far away from the quality of the com-
mercialtext adwenturesof the eighties,which pro-
ducedcannedtexts, sometimeswritten by profes-
sionalbookauthors.A possiblesolutioncouldbeto
combinethe full generationwith a templatebased
approachto which the TAG-basedgenerationap-
proachwetake lendsitself well. Anotherproblemis
the generatiorof error messageaskingthe userto
resohe anambiguousnput. The gameshouldide-
ally generateand presentthe playerwith a choice
of possible(unambiguousyeadings. So, the gen-
erationstratgy would have to be augmentedvith
somekind of monitoring,suchasthe oneproposed
by Neumannand van Noord (1994). Finally, we
wantto comeup with a way of synchronizingthe
grammardor parsingandgenerationin orderto en-
surethat expressionaisedby the gamecanalways
be usedby theplayeraswell.

Thesystemis designedn awaythatshouldmake
it reasonablyeasyto replaceour simple modules
by more sophisticatednes. We will shortly malke

our adwentureengineavailable over the web, and
want to invite colleaguesand studentgo testtheir
own languageprocessingnoduleswithin our sys-
tem. Generally we believe that the prototypecan
serne as a starting point for an almost unlimited
rangeof extensions.
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