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Abstract— Robots are increasingly working in close proximity
to and in collaboration with people. Yet much is still unknown
about the best behaviors for robots to use in interactions with
humans. For example, in approaching someone for help, is there
an optimal distance from a candidate person at which the robot
should attempt to initiate contact? What distance is neither so
far away as to risk not getting the person’s attention nor so
close that the person has already committed to passing the
robot?

Experiments that attempt to answer such questions must
balance tensions. In this paper, we argue for relatively low-
cost, rapid turnaround experiments achieved by carrying out
experiments “in the wild” in partially controlled ways using
Wizard of Oz robot control with on-board sensing. We present
the trade-offs of such experiments and illustrate the approach
with a set of experiments we are carrying out to determine an
appropriate distance for initial contact.

I. INTRODUCTION

We envision a future in which robots mingle with humans
in city squares, train stations, malls, or popular meeting spots
on college campuses. These robots will perform a variety of
tasks such as cleaning, leading guided tours, delivering items
or providing help and information. To safely and successfully
share the space with humans, these robots need to be aware
of the people around them and must be able to interact with
them in socially appropriate ways [1]. They need to be able
to predict the humans’ actions and to behave in ways that are
natural and predictable to humans. This requires knowledge
about how humans move through space and the ability to
adapt the robot’s own movements to the movement patterns
of the people around it. The robot also needs to be able to
communicate with people in a way that is natural and easy
to understand for humans without requiring any training of
or by the humans.

These robots may have to approach people to ask for their
help or cooperation. For example, a robot might need to get
directions to a specific person for whom it has a message [2],
to ask people to make way as a tour is passing through [3],
or to get assistance calling the elevator to deliver a package
to another floor [4]. In all of these examples, the robots will
need to approach nearby people and interrupt those people’s
ongoing activities to ask them for help. In other words, the
robots need to draw people into ad-hoc collaborations.

Approaching a person for help involves three main sub-
tasks: selecting who to ask, initiating contact and actually
approaching that person, and engaging the person in a dialog
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using verbal and non-verbal communicative behaviors. Be-
fore we can develop mechanisms for selecting, approaching,
and engaging, there are many research questions to answer.
For example, what characteristics of a person or the person’s
behavior make a person an ideal candidate for interaction?
Presumably, a person in a hurry is not likely to stop to
offer assistance, but what sensor reading corresponds to “in
a hurry”? Equally, we would like to choose a person who
is not so far away that we cannot get their attention, and
not so close that they have already committed to passing
the robot. What then is the appropriate range of distances at
which to attempt interaction? Our current research focuses on
determining strategies for approaching people that are most
successful in getting the robot the necessary help.

The field of social robotics is new and the answers to many
of these questions are still unknown. Experiments are nec-
essary to inform the design of social robots and to evaluate
system prototypes. In this paper, we describe the design of
experiments that we are currently running to answer some
of these questions, and we discuss some of our experiment
design choices. In particular, we have decided to run studies
in the wild rather than in a laboratory. Furthermore, we use
a Wizard of Oz design, where the participants think that the
robot is autonomous, while it is, in reality, controlled by a
human experimenter. Finally, we use low-cost sensing and,
in particular, avoid expensive environmental sensors. These
decisions entail trade-offs, but we argue that, overall, they
give us results that are more likely to carry over to real
deployed situations. In addition, they make it possible to set
up studies with a quick turnaround time, enabling an iterative
approach to the design and development of the social robot
[5], and they allow us to flexibly change the location of our
studies.

After an overview of studies addressing similar research
questions from the literature in Section II, we will discuss
the trade-offs entailed by the choices we made in designing
our experiments in Section III. Then we will illustrate our
approach by describing a sequence of studies designed to
determine what is the best distance for a robot to first initiate
contact with a human passer-by in Section IV. Section V
summarizes our conclusions.

II. RELATED WORK

The studies we describe in this paper are part of an
iterative process intended to discover the best method for
approaching a human to interact with. Having selected a
person to interact with (by methods not described here) we
could simply move in their direction, closing the distance



between the person and the robot. However prior work
suggests that there are several factors in approach behavior
that may impact the success of interaction attempts (e.g., the
sequence of behaviors that the robot and the human use when
they first initiate contact and approach each other [6], [7],
the direction of approach [8], [9] and the distance between
the robot and the subject while interacting [10], [11], [12]).

Heenan et al. [7] model the greeting behavior of a robot
on the detailed description by Kendon and Ferber [6] of
the behaviors people use when they first see their interac-
tion partner, establish contact, exchange a first salutation,
approach the other person, greet him or her and finally open
the conversation. Heenan et al.’s evaluation of their robot is
preliminary in that they only report on informal observations
and don’t systematically compare different instantiations of
their overall model. In the experiments described later in
this paper we are trying to narrow down what the optimal
distance is at which the robot should first call attention to
itself and signal its desire to interact with the human, a
question which has been left unexplored by previous work.

In the work of Satake et al. [8], subjects were selected
for interaction, and approaches made via the shortest path.
However the authors noted a number of failed attempts, in
part because the subjects failed to notice that the robot was
attempting to engage with them, especially when the robot
approached from the side. To solve this, they implemented a
frontal approach strategy where the robot detected a subject
and maneuvered to be in front of them, a goal which requires
significant long-range planning and trajectory computation so
as to be in the correct place, with the correct orientation (i.e.
facing the subject) before engaging. This method increased
the number of successful interactions, but relies on the use
of substantial environmental sensing. In their work, Satake
et al. made use of six LIDAR sensors placed statically in a
shopping environment.

Prior work in a more enclosed, living room scenario by
Sisbot et al. [9] showed that subjects preferred the robot to
approach from the side, as opposed to frontal approaches. In
their scenario subjects were seated in a chair in the center
of the room watching TV and the robot would approach
with a remote control. 80% of the subjects rated the frontal
approach as the least preferred option (the most preferred
was from the right). They conjecture that this result was
impacted by the specific scenario. Most subjects sat in the
chair with their legs directly out in front of them, and might
have been anxious about contact between the robot and their
legs. This preference could potentially change if the subjects
had a better sense of where the robot is “looking.”

This direction of gaze effect was seen in work by
Takayama and Pantofaru [10], where the “gaze” of the
robot (at the feet vs. at the face) affected the acceptable
approach distance recorded by human subjects. Takayama
and Pantofaru hypothesized that mutual gaze, when the robot
and the subject are looking at each other’s faces, increases
the size of the comfortable space between them (and hence
the preferred distance for interaction), but although they were
unable to support this hypothesis, they did find a correlation

between gaze direction and ideal approach distance based
on gender; when the robot was looking at the subject’s face,
men got closer to the robot than women.

The main focuses of the Takayama and Pantofaru study
were the factors that impact ideal approach distance, both
when a robot approaches a subject and when a subject ap-
proaches a robot. Their findings, along with those of Walters
et al. [11], suggest that subjects treat robots similarly to how
they treat human “social partners,” with approach distances
of 0.5m to 1.25m that align with those of human-to-human
interactions (see Hall [13]). Both robot studies examined
features of the subjects that impact comfortable approach
distance, such as prior experience with robots (which reduced
approach distance), or with pets (also resulting in reduced
comfortable approach distance). Prior experience with robots
was determined by a questionnaire, measuring greater than
or less than one years experience with robots. Walters et
al. [14] subsequently performed an experiment that examined
the longitudinal effect of sustained interaction with a robot,
with a small number of participants (initially 7, dropping to 4
by the end of the process), in a controlled environment. One
issue with all of these studies is that they were conducted
under laboratory, or highly controlled, conditions.

We hypothesize that these results may be different when
conducted in the wild, with subjects who do not know at
the time of the study that they are being monitored. There
are also confounding issues in successful approaches. Most
prior work examines comfortable approach distance between
robot and human; that is, how close to each other can they
get, before the human feels uncomfortable. Our interest lies
in the most appropriate contact distance, that is, how far
away from a subject should a robot attempt interaction, or
inversely, how close is too close for a robot to attempt an
interaction with a subject who is not expecting to interact
with a robot. The appropriate contact distance might be one
in which the human is not comfortable, although we would
not be surprised to find through experimentation that the
most appropriate distance for first contact correlates with
Hall’s public or social distances [13]. For this research, the
approach speed, distance and angle are the physical factors,
but these ultimately have to be coordinated with appropriate
interaction attempts, through voice, gesture, use of display
and other efforts.

III. EXPERIMENTAL DESIGN DISCUSSION

We now discuss some tensions that experiments designed
to study human robot interaction in public spaces have to
balance:

• Level of experimental control. An experiment will be
undertaken in either a controlled laboratory setting or
“in the wild”, or in an environment with some level of
experimental control between these two extremes. The
trade-off has an effect on the reliability and generaliz-
ability of the results.

• Robot control mechanism. The robots used in an
experiment need to have their behavior controlled. The
mechanism of control can require more or less human



intervention (i.e. the control can be less or more au-
tonomous). The trade-off has an effect on the cost and
timing of experiments.

In the rest of this section, we discuss these trade-offs in
more detail.

A. Laboratory vs. “In the wild” Experiments

In contrast to laboratory experiments, where one can
control many aspects of the participants and the environment,
when studying human-robot interaction “in the wild” we
do not have full control over who participates or what the
environment looks like. For example, we don’t know how
familiar the participants are with robots and technology in
general, there may be other people in the environment, other
ongoing activities may sometimes distract from the robot,
and the participants may be focused on where they are going
rather than the interaction with the robot. This complicates
the interpretation of data collected in the wild. On the
other hand, the circumstances in laboratory evaluations may
be too idealistic and may lead to results that cannot be
replicated when the system is deployed in the “real world”.
For example, in the world of spoken dialogue systems, it
has long been known that evaluation in the lab does not
give an accurate forecast of the behavior of a system once it
has been deployed. Van Haaren et al. [15] discuss one such
problem with the Dutch rail assistant telephone agent, which
had a task completion percentage of 94% when evaluated
in the lab by volunteers, but a task completion of 68%
when actively deployed in the wild. The explanation from
the authors makes it clear that while laboratory controlled
experiments are useful, the behaviors of participants in real
life are significantly more varied and harder to predict.

In addition, for some research questions, setting up a
laboratory experiment may be quite difficult. In the example
studies discussed in this paper we are trying to determine
what is the best distance for first contact when a social
robot wants to ask an unsuspecting human for help. We set
up a robot in different positions in well-trafficked areas on
a college campus and observe what happens when people
come across the robot unexpectedly. To achieve a similar
level of surprise in the laboratory, we would have to employ
a deception scheme where we recruit participants to come to
the lab for an ostensible study on some unrelated topic and
then make sure that they come across the robot as they enter
the lab. While this is harder to design, set up and carry out,
it is still not clear that participants would react to the robot
in the same way when they come across it in a research lab
as when they encounter it in the course of their normal daily
activity.

Finally, laboratory studies tend to be more costly and time
consuming, so that studies in the wild will often be able to
produce more data. In the studies described later in this pa-
per, we set up a robot in a thoroughfare on a college campus,
which allowed us to observe several interactions during the
same time frame that in the lab we would have required to
capture one interaction. This additional volume of data also
makes it possible to deal with some of the noise introduced

by not being able to control every aspect of the experiment.
For example, in a separate study [16] that collected data over
the Internet as well as in a laboratory experiment to evaluate
an interactive instruction giving system, we found that while
the data from the Internet based study is more noisy (with,
for example, users canceling after only partially completing
the task, some users leaving many questionnaire items blank,
and a skewed gender distribution), the results of the Internet
based study and the lab experiment are consistent, and we
were able to collect so much more data over the Internet,
that a more in-depth analysis was possible. It would not have
been feasible for us to collect a similar amount of data in
the lab because of time and budget constraints.

B. Trade-offs in human vs. autonomous control

Another tension that any experimental design must address
relates to the level of autonomous control needed in the
experiments. At one end of the spectrum is full autonomous
control, which has the primary benefit of fidelity. Because
the robot behaves autonomously, and thus responds to sensor
inputs in the same way every time, when people respond to
the robot’s actions they are responding to the same actions
the robot would take in a real-life scenario. If the ultimate
goal is to determine robot behaviors that elicit desirable
human responses, a fully-autonomous robot ensures that the
robot behaviors are repeatable.

However, developing an autonomous robot behavior re-
quires significant time and expense, so waiting until algo-
rithmic control can be developed before experiments can
begin means delayed validation of the approach. Worse, we
don’t know the best robot behaviors until after experiments
are completed. For example, before we’ve carried out ex-
periments, we don’t know the optimal distance at which
the robot should first initiate contact with the human and
signal its intention to interact. We could attempt to develop
an autonomous system in which this contact distance is
a configurable parameter, but that would likely be more
difficult than developing such a system capable of a much
narrower range of contact distances. Furthermore, different
contact distances might require very different sensor technol-
ogy — for example, close contact distances might be easy
to manage with on-board sensors, while longer-range contact
distances might call for more expensive on-board sensors or
even environmental sensors. Because the appropriate contact
distance we can autonomously manage will depend on the
sensor regime in place, we risk making a system that is more
complex, and expensive, than needed.

These problems are ameliorated if we can carry out
experiments with a robot before autonomous control is
implemented. Borrowing from HCI approaches, we propose
Wizard of Oz (WoZ) studies, in which the robot is portrayed
as autonomous while actually being controlled by an operator
out of view of the subjects. Thus, subjects in the experiment
have the experience of interacting with an autonomous robot
even though the sensor regime and algorithms are not yet
in place to have the robot behave autonomously. Riek [17]
gives an excellent overview of the use of WoZ studies in



Human-Robot Interaction, including challenges faced when
performing these kind of studies with robots. In line with the
suggestions contained in this paper, we consider our WoZ
studies part of an iterative process in the development of
autonomous robot control. Specifically, we use these methods
as a way to guide the direction of development of the robot.
This presents its own challenges, including making sure that
we simulate robot behavior in a manner that can ultimately
be automated.

In order for us to trust the data we get about human
responses to robot behavior, the robots must seem real to the
subjects in our experiments. If a robot displays much more
intelligence than can later be implemented in an autonomous
control system, then human response to it might differ
markedly from what can later be deployed. To accomplish the
goal of producing behaviors that seem real to experimental
subjects, we script the behaviors the robot can perform
and then restrict the human wizard to follow these scripted
behaviors. This can often be enforced by convention, but in
some cases it is easy enough to enforce constraints on the
robot behavior more strictly by providing an interface for
the wizard that only allows for certain behaviors or by using
autonomous behaviors built into the robot for certain simple
subtasks.

In this way, we are clear about both our expectations of
the robot, and of the people who interact with them. What
is novel in our suggested experiment is that the humans
in the study are not expecting to encounter a robot. There
is no predefined scenario for the human, instead the robot
has a task to complete with wizard assistance, and attempts
to approach unsuspecting subjects. The completion of the
task (say, answering a simple question) is one facet of the
evaluation behavior, with analysis of the human reaction to
the attempted approach the key factor in this experiment.

IV. CONTACT DISTANCE EXPERIMENTS

To illustrate our approach to social robotics experiment
design, addressing the trade-offs outlined above, we will
describe a set of experiments we have designed and carried
out to help determine the appropriate range of distances at
which a robot’s attempts to initiate an interaction with a
human are most likely to be successful.

We started with preliminary exploratory studies in which
we were trying to determine how people react to an au-
tonomous robot in a busy building on our college campus.
Because we were trying to determine robot behaviors that
elicit different human responses, we did not yet know what
robot behaviors to try. Therefore, the Wizard of Oz approach
seemed like a natural fit — we could undertake the experi-
ments before expending much time and expense to develop
autonomous control, and before we knew what behaviors an
autonomous controller must support.

The main purpose of these initial experiments was to figure
out who the ideal person(s) would be to approach, and how
to approach them. Because these studies were exploratory,
the human robot controller (the wizard) was not trying to
follow any pattern or accomplish any goal with the robot.

From a hidden spot, the controller would drive the robot
around and have it approach random people, recording their
reactions with on-board cameras. Because the system was
under human control, and the human controller could see
the interactions, we did not need more expensive sensors
— we only used on-board cameras because it made off-line
analysis easy.

Our studies were conducted using the TurtleBot platform,1

comprised of a mobile base with an attached depth sensor
such as a Microsoft Kinect. The TurtleBot is supported
under ROS - the open source Robot Operating System.2 The
experimental set up of our TurtleBot can be seen in Fig. 1a,
with three cameras to capture interactions with passers-by.
We know that future interaction experiments require a human
scale robot, and we have an experimental platform which
we will use when initial hypotheses have been validated.
LINDSEE (Learning Interactive Navigator and Developmen-
tal Social Engagement Engine), designed and built by our
students, can be seen in Fig. 1b. We used the TurtleBot for
these initial experiments as the full capabilities of LINDSEE
were not required to validate our initial hypotheses, and we
can continue development on LINDSEE as these experiments
progress. The white mast just visible on the TurtleBot in
Fig. 1a extends the height of the robot to the same 5’
height as LINDSEE. While the TurtleBot is different from
LINDSEE in important ways, in the experiments we describe
here, subjects interacted with the TurtleBot in ways that
indicated they saw it as an independent social agent (e.g.
waving at the robot). Our experiments are designed so that
the robots we intend to use in this environment move and
interact in the same way, and all robots use ROS, making
the software we develop transferable between them.

From the pilot studies described above, a pattern emerged.
When approaching a person, the initial distance between
the person and the robot played a role in whether or not
the person would react with some form of communication
indicating that the robot had the subject’s attention (such as
waving, pointing to the robot, or stopping and staring at the
robot). It seemed that people tended to pay more attention
to the robot when it was not too far away nor too close.
This led us to hypothesize that there is a bounded range of
appropriate distances for the initial contact between the robot
and the candidate.

The question was then, what exactly is the appropriate
range of distances? Can we bound the range to a small
range of distances? Again, we planned further studies to
try to answer this question. But first, we started with a
very inexpensive validation study aimed at telling whether
the hypothesis was worth pursuing. The purpose of this
experiment was to confirm if there was a distance that was
too close — a contact distance that would result in the person
being less likely to communicate with the robot. We reasoned
that if our hypothesis of a range of appropriate distances
was valid, then there must be a contact distance that is

1http://www.turtlebot.com/
2http://www.ros.org



(a) Turtlebot (b) LINDSEE

Fig. 1: Our experimental robot platforms

too close. Performing a time-consuming study to narrow the
range would be a waste of resources if the hypothesis wasn’t
valid at all.

The human controller in this second experiment stationed
the robot inside, but near to the entrance of, a building on
campus. The robot was placed in such a way that people
entering the building from outside could not see the robot
until they had already opened the door. In this way, we know
that the distance the robot is from the door is the same as
the distance between the human subject and the robot when
the subject first encounters the robot. With this setup, once
a person entered the building, the wizard would drive the
robot towards the person.

More often than not, the person entering would actively
go out of their way to avoid the robot, as if it were some
obstruction on the floor. One person was visibly scared by
the robot. This anecdotal observation supports our hypothesis
that there is a contact distance that is too close for interaction;
the person encountered the robot very suddenly, before any
action on the part of the robot (or the controller in this case)
could impact the interaction.

With bolstered confidence in the validity of our hypothesis,
we set out to design an experiment to narrow the range of
distances. This experiment needs to be more controlled than
the first exploratory study, but as argued above, we avoid
strictly-controlled laboratory experiments so that human re-
sponses are natural. Thus, we have a semi-controlled semi-
wild experiment. What we have planned is another WoZ style
experiment. In this setup, the robot will be placed at specific
distances inside the entrance of a building on campus. The
robot again will have on-board cameras to record the candi-
dates’ reactions to the robot. As in the previously-described
validation study, the potential candidates, the people entering
from said entrance, will not be able to see the robot until they
have entered the building. Once the candidate has entered the
building the robot will start its approach. We will consider
the approach a success if the candidate tries to interact with
the robot. For different runs of the experiment, we will vary
the initial distance from the door and determine the success
rate from each distance, thus helping us narrow the range of
appropriate contact distances.

V. CONCLUSIONS

The field of social robotics is relatively young and there
is much that is still unknown about the best ways to build
robots that must interact appropriately with humans. In this
paper, we have discussed one set of research questions related
to appropriate ways of selecting and approaching people
for assistance. While much is known about how humans
approach each other, it is not clear how well those lessons
translate to human-robot interactions.

Because such fundamental research questions are still open
in the field, it seems to us that there is opportunity for much
progress to be made with relatively non-resource-intensive
approaches, thus enabling contributions from groups outside
traditional robotics. In this paper, we have presented one
possible approach to such inexpensive studies. While doing
experiments “in the wild” does introduce problems of exper-
iment control, and doing strictly-controlled experiments in
laboratory settings introduces issues of generalizability, we
can address these concerns with an approach between the two
extremes. And if we perform the studies with inexpensive
hardware, and under human instead of autonomous control,
we can get experiments up and running more quickly than
would be required by a more traditional approach of building
an autonomous robot and testing it. Further, if we adhere to
experimental and reporting guidelines that ensure the rigor
and replicability of our work, then significant advances can
be made using an iterative approach to experimentation and
design.

Much can be learned, of course, from experiments per-
formed using autonomous robots. And much can be learned
from field studies and laboratory studies alike. In this paper,
we argue for an approach that we think complements those,
while recognizing that there are trade-offs. We have made
those trade-offs in part because we believe that they consti-
tute the best experimental set-up for our research questions
and in part because of resource constraints. Others with
similar constraints, or others interested in similar questions,
can make similar trade-offs.
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