
Modeling Dependencies for
Cascading Selective Undo

Aaron G. Cass and Chris S. T. Fernandes

Union College, Schenectady, NY 12308, USA,
{cassa|fernandc}@union.edu

Abstract. Linear and selective undo mechanisms have been studied ex-
tensively. However, relatively little attention has been given to the se-
mantics of selective undo in situations in which the undone command
has dependency relationships with actions later in the command history.
We propose a new approach to selective undo using a process modeling
language from the software process community to model dependencies
between commands, and we outline semantics for undo in the face of
these dependencies.

1 Introduction

In most applications today that implement an undo feature, a history list is
kept of all user actions, and a linear undo model is followed. In this model, an
undo command will only reverse the most recent action, and subsequent undo
commands will iterate backwards through the history list. For example, given
user actions A1, ..., An, issuing an undo command will only undo action An, and
one cannot undo any action Ai without also undoing actions Ai+1, ..., An.

Other undo paradigms exist, however, and many have studied non-linear
undo models. One such model is the selective undo model, introduced in [1] and
studied more formally in [2]. In this model, a user can undo action Ai without
undoing other actions. The meaning of this kind of undo can differ, however.
Most implementations of selective undo use the “script” paradigm [3], in which
the result of undoing action Ai alone is equivalent to the result reached by
executing user actions A1, ..., Ai−1, Ai+1, ..., An in that order. That is, if the list
of user actions is viewed as a script, undoing one action is equivalent to removing
that action from the script, with no other changes. This can result in side effects
the user may or may not have intended. If the given actions were the following
word processor commands:

1. type “hello”
2. italicize “hello”
3. copy “hello”
4. paste in position x

then selectively undoing the second action would result in the removal of italics
from both the original and the pasted text. On the other hand, the semantics of



selective undo in [1] would result in the removal of italics from just the original
text. This semantic ambiguity points to the disparity between the way undo is
perceived by interface programmers compared to users [4, 5].

In this position paper, we explore the semantics of selective undo using ideas
from the software process community. We believe this to be a good match since
a primary cause of the ambiguity discussed above is the dependencies which
can exist between user actions in any given “script”. In the above example, this
dependency is seen when the italicized text is duplicated. Software engineering
is a domain in which these dependencies frequently occur, and thus provides
fertile ground for determining appropriate undo semantics. In addition, tools
already exist in the software engineering community for capturing dependencies
in complex process or workflow models. Conversely, the tools which are used for
software development can greatly benefit from a feature allowing selective undo.

One novel aspect to our approach is the way in which we handle recognized
dependencies between user sub-tasks. In previous work, these dependencies were
either not accounted for at all or else handled by disallowing the undo action
if the result was not meaningful, such as in [1]. An example of a selective undo
that creates a meaningless result is if a programmer first created a class “Car”
and second created a method “fillTank” for “Car”. Selectively undoing the first
action would cause the second action to be meaningless and under the seman-
tics presented in [1] would be disallowed. We propose a different alternative
– allowing an undone action to cause the undoing of other user actions un-
til a meaningful state is reached (with appropriate user feedback and override
controls). We believe this cascading selective undo offers more flexibility than
previous approaches and that software engineering approaches can be used to
help determine a meaningful cascade.

Section 2 provides details about the software engineering concepts we will
employ to capture the context of selective undo. Section 3 gives examples of the
types of questions we will explore. Section 4 examines future work and conclu-
sions.

2 Our approach

Cass has been developing software design environments for use in design guid-
ance experiments [6] using programs written in a process-programming language
called Little-JIL [7, 8]. Such process programs allow for a wide range of guidance
to users of a design tool, from very flexible to very constrained sequencing of
tasks. A process program specifies the allowable sequences of tasks and the data
flow between them. The Little-JIL run-time environment works with this pro-
cess model to make commands available to users on a hierarchical to-do list.
As the user performs tasks, the system presents new tasks as controlled by the
semantics of the Little-JIL program.

The current implementation does not support undoing user actions. One
key issue is that the process program represents a controlled walk through a
design space and the run-time system as such maintains a representation of the



Fig. 1. Little-JIL Basics

state of this walk. Therefore, if we are to support undo, we need to do it in
such a way that the run-time system can continue to maintain accurate process
state information. Our approach is therefore to define undo semantics for the
hierarchical process programs written in Little-JIL. This should give us robust
semantics for cascading selective undo that can be extended to other dependency
models.

In this section, we will briefly introduce Little-JIL, how Little-JIL programs
represent control and data dependencies between tasks, and how we can use that
information to support cascading selective undo.

2.1 Introduction to Little-JIL

Little-JIL programs are hierarchies of steps which are instantiated at run-time
to become items to be placed on the agendas of agents acting in the process.
The step kind, represented by the sequencing badge on the step in the graphical
representation of the program, specifies how the instantiated sub-steps are to be
sequenced. The badges for the four step kinds are shown in the left-most legend
of Figure 1. Children of sequential steps are performed left-to-right with one
child available for execution only after the previous one is completed. Children
of parallel steps are performed in any, possibly overlapping, order. Only one
child of a choice step is executed – when one of the steps is started at the
discretion of the agents involved in the process, the other children are retracted.
Children of try steps are attempted in left-to-right order and as soon as one of
them successfully completes, the try step is completed. Program hierarchies are
arbitrarily deep, with leaf steps representing the primitive actions available to
agents.

Note that any undo mechanism for Little-JIL programs must allow a user
to undo a primitive action that was not the most recently executed, for two
reasons. First, Little-JIL programs can specify the coordination of actions of
multiple agents and therefore multiple primitive actions can occur concurrently.
At the minimum, an undo mechanism would have to allow an undo of one agent’s
most recent action (a locally linear undo) in cases where this is not the globally
most recent action. Second, the completion of a primitive action in Little-JIL can
cause new actions to become available. For example, if the action just completed
is the last of the children of a sequential step, the sequential step is completed



and possibly other actions are made available depending on the step kind of the
parent of the sequential step. In order to maintain legal process state, undoing
the user’s most recent primitive action will require undoing the completion of
the sequential step and the posting of the new options.

2.2 Modeling Control and Data Dependencies

The Little-JIL program structure shows control dependencies between steps –
steps that share a sequential ancestor are sequentially ordered themselves. Data
dependencies are modeled by parameter passing along the edges between parent
and child steps. Steps have parameters specified as in, out, in-out, or local, and
edges can be annotated to indicate where these parameters get their values. If
an in or in-out parameter is bound from a parameter in the parent, its value is
copied from the parent to the child before the child starts. Conversely, if an out
or in-out parameter is bound to a parameter in the parent, its value is copied
from the child to the parent when the child completes successfully. Therefore, to
indicate a data dependency between two sibling steps, we bind the out parameter
of one to a parent parameter, which is then bound to the in parameter of the
other sibling.

Note that because data passing only occurs when steps start or complete,
parameter passing can only be guaranteed between siblings if there also exists a
control dependency between them. Siblings that are children of a parallel step,
for example, can be started at the same time, so a parameter value copied from
the parent might not reflect the value produced by a sibling. With this limita-
tion, Little-JIL programmers indicate dependencies between tasks with control
dependencies primarily. Note that in future versions of Little-JIL, a mechanism
for sibling communication and synchronization will allow another way to specify
task dependencies.

2.3 Cascading

Given a Little-JIL program from which a temporal sequence of primitive ac-
tions has been instantiated, and which defines the legal sequences of these same
primitive actions, we can tell whether the resulting sequence of a selective undo
would be meaningful according to the dependencies specified in the Little-JIL
program. For example, if the leftmost child of the sequential step in Figure 1
were undone, sequential semantics would dictate the undoing of its siblings too.
This can be done automatically and would avoid the problem with the “Car”
class example given in Section 1 since the removal of the class would cause the
removal of its methods as well.

3 Discussion

In this section we present important questions we plan to explore to determine
undo semantics. First, is the Little-JIL language robust enough to capture all re-
quired semantics for undo? While we are currently working under the assumption



that control dependencies subsume all important dependencies, data dependen-
cies may exist where there are no statically-determined control dependencies.
Also, control dependencies can be rather complex because of Little-JIL’s addi-
tional semantics for cardinality and exception handling.

Cardinality specifies the number of instantiations to create for a step: zero
or more (*), one or more (+), zero or one (?), or somewhere between m and n
(m-n) for specified non-negative integers m and n. Exception handling specifies
how to handle exceptions thrown from a child step, and then how to continue
execution afterward. Once the exception is handled by executing a handler sub-
step (which can have children), execution continues in one of four ways, as shown
in the right-most legend of Figure 1: continue continues with the siblings of the
sub-step that threw the exception, complete completes the step, restart restarts
the step, causing the sub-steps to be re-instantiated, and rethrow causes the step
to throw the exception to its parent.

With these rich semantics of control and data dependency, determining the
semantics for cascading undo for arbitrary Little-JIL programs will be non-
trivial.

A second question asks which kinds of actions should the user be allowed to
undo. In [9], a distinction is made between undo as a regular user action (which
itself can be undone), and a meta-command (which cannot). Allowing the user to
undo an undo may prove difficult to represent to the user as an option, especially
under the cascade model where multiple sub-tasks are involved. This also relates
to the issue of how much of the cascade should be presented to the user when it
occurs.

This question also pertains to the granularity of the task to be undone.
Under the Little-JIL model, should selective undo be restricted to leaf steps or
can internal nodes be undone? If the latter, this raises the issue of how much
the user needs to know about Little-JIL semantics in order to effectively use the
tool.

A third question relates to the mechanics of reversing an action when an
undo is called for. Is reversability always decided at run time? Clearly this is
sometimes necessary. For example, if an online purchase of airline tickets were to
be modeled, undoing the purchase may or may not be allowed depending on the
current date or type of ticket purchased. However, run-time evaluation reduces
performance and for any domain, there will be undo steps that work identically
in every instance and can therefore be statically embedded. Can a running little-
JIL process with instantiated steps be augmented, perhaps with annotations, to
reflect where dynamic evaluation of undo is necessary? In a related vein, could
annotations be embedded into instantiated steps to provide more information
about data dependencies (such as the time of purchase for the above example)?
These annotations could provide information that would otherwise have to be
inferred from the original step diagram or else not be available at all.



4 Conclusions and Future Work

In this paper we have begun to explore issues of selective undo in the context
of sub-tasks which may have dependencies with one another. By using formal
process modeling techniques, we have provided a means to capture both control
and data dependencies. Our goal is to facilitate cascading selective undo in a
conservative way, i.e. in a way that will always leave the user in a meaningful
state while providing more flexibility.

It is important to note that context-dependent undo elicits other important
issues besides the ones given in Section 3. For example, if a software designer
renamed class X to Y, and then created a method “addYListener” and an in-
terface “YListener” subsequently, then the undoing of the renaming step should
cascade name changes in the method and interface too. The fact that these three
constructs are related may originally only exist in the designer’s mind and cap-
turing that external knowledge is an important issue. However, discovering this
knowledge is an AI problem that, while interesting, we do not wish to pursue
at the onset. For now, we wish to focus on a conservative model of cascading
where the knowledge required for a successful cascade are statically determined
before moving on to more complicated problems of context dependency. In time,
we wish to tackle these other issues as well.

References

1. Berlage, T.: A selective undo mechanism for graphical user interfaces based on
command objects. ACM Transactions on Computer-Human Interaction 1 (1994)
269–294

2. Myers, B.A., Kosbie, D.S.: Reusable hierarchical command objects. In: Proc. of the
ACM Conf. on Human Factors in Computing (CHI 96), ACM Press (1996) 260–267

3. Archer, Jr., J.E., Conway, R., Schneider, F.B.: User recovery and reversal in in-
teractive systems. ACM Transactions on Programming Languages and Systems 6
(1984) 1–19

4. Abowd, G.D., Dix, A.J.: Giving undo attention. Interacting with Computers 4
(1992) 317–342

5. Mancini, R., Dix, A.J., Levialdi, S.: Dealing with undo. In: Proc. of INTERACT’97,
Sydney, Australia, Chapman and Hall (1997)

6. Cass, A.G., Osterweil, L.J.: Process support to help novices design software faster
and better. Technical Report 2005-018, U. of Massachusetts, Dept. of Comp. Sci.
(2005)

7. Wise, A.: Little-JIL 1.0 Language Report. Technical Report 98-24, U. of Mas-
sachusetts, Dept. of Comp. Sci. (1998)

8. Wise, A., Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton, Jr., S.M.:
Using Little-JIL to coordinate agents in software engineering. In: Proc. of the
Automated Software Engineering Conf., Grenoble, France. (2000)

9. Vitter, J.S.: US&R: A new framework for redoing (extended abstract). In: SDE
1: Proc. of the first ACM SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments, New York, NY, USA, ACM Press
(1984) 168–176


