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Abstract. This paper indicates how effective software-process programming lan-
guages can lead to improved understandings of critical software processes, as
well as improved process performance. In this paper we study the commonly
mentioned, but seldom defined, rework process. We note that rework is gener-
ally understood to be a major software development activity, but note that it is
poorly defined and understood. In this paper we use the vehicle of software-
process programming to elucidate the nature of this type of process. In doing
so we demonstrate that an effective language (i.e. one incorporating appropriate
semantic features) can help explain the nature of rework, and also raise hopes
that this type of process can be expedited through execution of the defined pro-
cess. The paper demonstrates the key role played in effective rework definition
by such semantic features as procedure invocation, scoping, exception manage-
ment, and resource management, which are commonly found in programming
languages. A more ambitious program of research into the most useful process-
programming language semantic features is then suggested. The goal of this work
is improved languages, for improved understandings of software processes, and
improved support for software development.

1 Introduction

Rework is an ongoing problem in software development. Rework is generally consid-
ered to be potentially avoidable work that is triggered to correct problems or (some-
times) to tune an application [5, 9]. The cost of rework can approach or exceed 50% of
total project cost [19, 9, 5]. Rework cost rises dramatically the longer the delay, relative
to the life cycle, between the occurrence of a problem and its remediation. For example,
for a problem that occurs in requirements analysis, the cost of repair may rise by one to
two orders of magnitude depending on how late in the life cycle it is caught [5].

Research on rework has focused on minimizing the amount of rework that a project
may incur [19, 9, 5, 26]. This is typically done through the introduction of earlier, more
frequent, and more formal reviews, inspections, and tests; these aim to detect and enable
the correction of problems as early in the life cycle as possible. A reduction in rework
costs has also been shown for increases in the general level of process maturity [21,
26]. Through such approaches the cost of rework has been reduced significantly, in
some cases to less than 10% of total project cost [19, 9].



Despite successes in reducing rework, it is generally accepted that rework cannot
be eliminated entirely. Moreover, not all rework-inducing problems can be detected as
soon as they occur; some problems will only be caught some distance downstream.
Thus, some amount of rework, including some expensive rework, is inevitable.

In this paper we propose that the problem of rework can be attacked from another
angle, namely, that of software-process programming. Process programming, which is
the specification of software processes using formal, usually executable, languages, can
contribute to the solution of the rework problem in two ways: It can help with the
prevention of rework, and it can help in facilitating rework that cannot be prevented. In
this paper we address the latter opportunity.

Toward the facilitation of rework, process programming can contribute to the pre-
cise definition of rework processes, which in turn can contribute to the analysis and
understanding of rework. Execution support can enhance the fidelity and effectiveness
of rework processes, thereby improving their monitoring and reducing their costs. In
combination, these measures further help to ensure the formal and actual correctness of
rework processes, and they may indirectly lead to reductions in the amount of rework
by reducing the need for rework.

The specification or programming of rework processes poses special challenges,
however, that arise from an essential characteristic of rework, namely, that it entails
repetition with variation. Typically in rework an activity must be repeated, a work prod-
uct must be revised, or a goal must be reestablished. Thus, what was done or achieved
before must be done or achieved again, but in a new context, one that reflects prior
work, identified problems, dependent artifacts and activities, new resource constraints,
and other ongoing efforts.

To take one example, the same basic activity to define a requirement may be in-
voked during the initial specification of requirements as well as when a problem with
the requirements is later discovered during design. However, in the rework situation,
developers with different qualifications may be required (say, expert versus interme-
diate), access to requirements documents may need to be coordinated with access by
design engineers, dependent design elements may need to be identified, a specific sort
of regression test (or review) of the revised requirements may be needed, and problems
with the rework may require handling in ways specific to that context.

If rework activities are variations of initial activities, then it should be beneficial to
specify those activities in such a way that the nature of the variations is identifiable, for
example, as alternation, parameterization, or elaboration. This suggests that rework ac-
tivities are essentially reinstantiations, perhaps with context driven parameterized mod-
ifications. We believe that this view can lead to cleaner, clearer, more understandable
development processes that, nevertheless, are complete and faithful to the complexities
of real development. This clarification should, moreover, expedite automated support of
the performance of real development. Thus, while a deeper understanding of the notion
of rework is a key goal of this work, so too is the provision of more effective automated
support to real software development processes.

A key obstacle in achieving these goals is the ability to understand how to specify
the contexts in which rework might occur in software development. This seems to us
to entail the ability to capture precisely all of the relevant elements of that context, in-
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cluding both those that are retained from earlier development and those that are new.
However, the ability to specify the relevant elements of rework processes, including
their contexts and activities, in turn depends on having process languages with appro-
priate constructs and semantics.

This research makes two primary contributions toward these problems. First, we
show that some kinds of rework can indeed be formalized by process programming,
especially focusing on details of the rework context. Second, we identify features that
process languages should incorporate in order to support real-world software processes
including rework. Conversely, we recommend that those who are interested in specify-
ing rework processes should look for process languages with these features. With such
languages we should be able to give more complete and precise definitions of rework
processes. With such definitions, we should be able to better understand the nature of
rework and its relationship to other aspects of the software life cycle. Furthermore, by
applying the definitions to the execution of processes, we hope to further reduce rework
costs and to maximize rework efficiency in practice.

The remainder of this paper is organized as follows. Section 2 describes our ap-
proach to formalizing rework processes using process programming. It gives an ex-
ample of a software process that includes rework. This process is specified using the
process-programming language Little-JIL [36, 37]. This section also presents an anal-
ysis of the language features used to capture various aspects of rework. Section 3 dis-
cusses related work on defining rework processes. Section 4 then presents our recom-
mendations regarding language features for capturing rework processes and discusses
applications of process programming to defining, understanding, and executing rework.
Finally, Section 5 presents our conclusions and indicates directions for future work.

2 Approach

Our approach to the formalization of rework is to represent rework using process pro-
gramming languages in which the activities to be performed and especially the context
of those activities can be precisely defined. This should allow us to be clear about how
rework is to be performed, for example, when a flaw in the requirements specification
is only discovered during design or coding and must be repaired at that later stage. It
should also allow us to be clear about what happens when a design fails to pass review
and must be revised still within the design phase but perhaps using a technique different
from the one that gave rise to the problem.

2.1 Basis in Programming

We see significant analogies between common rework situations and typical program-
ming language constructs. Rework activity definitions are analogous to procedures or
methods. The context of a rework activity is analogous to the scope in which a proce-
dure or method is invoked. The particular features associated with these programming-
language notions suggest benefits for the definition of rework processes.

For example, a procedure allows a flow of actions to be defined. Additionally, a
procedure can be explicitly parameterized and may rely on additional information or
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services defined externally in the scope from which it is invoked. Mechanisms such as
these enable the definition of activities that are adaptable to their contexts, in particular
to factors that characterize and differentiate initial development from rework.

Similarly, a scope in a programming language may contain data and control dec-
larations, initializations and bindings, assertions, exception handlers, and so on. Ad-
ditionally, the construct that defines the scope will typically invoke some activities as
subroutines, controlling whether, when, and with what parameters a particular invo-
cation occurs, and also determining how the results, whether normal or abnormal, are
handled. These sorts of mechanisms enable the definition of contexts appropriate to
both initial development and rework.

The analogies to general-purpose programming-languages concepts are thus sug-
gestive of many benefits for the specification of rework processes. However, as with
general-purpose programming languages, the particular design of a process-programming
language affects the kinds of activities and contexts that can be readily described and
automated. To illustrate the formalization of rework through process programming, we
will use a particular process-programming language, Little-JIL [36, 37], applied to an
example of a phased software-development process that includes explicit rework.

The process we describe addresses requirements specification and design at a high
level. This process description is intended as an example of how rework can be incor-
porated accurately into a software process. It is NOT intended to represent an ideal
software process or even to imply that this is the only way that rework could be handled
in this process. The approach we present can be applied to processes both more and less
complex or restrictive than the example we give – an effective process language should
enable a corresponding range of process characteristics to be addressed.

2.2 Example

Consider the initial portion of a phased software development process. After require-
ments specification activities are completed, the developers proceed to design activities.
During the requirements specification activity, as requirements elements are developed,
they are reviewed, both independently and for inter-requirement consistency.

As design proceeds, design reviews are also conducted, including ones that check
the conformance of the design with requirements. As a result, it might be discovered
that there are design elements based on design decisions that have no basis in the stated
requirements. It might be further determined that the requirements specification needs
some additional requirements to address the concerns reflected in these particular design
decisions. At this point, the developers will engage in a rework activity. While still in
the design phase, some requirements specification activities must be performed.

We believe that many aspects of this scenario will be easily described using a
process-programming language that incorporates constructs (or variations thereof) from
general-purpose programming languages, such as scoping, procedure invocation, ex-
ception handling, and so on. To investigate this hypothesis, we have used our process-
programming language, Little-JIL [36, 37], to address the above scenario.

Figure 1 shows a Little-JIL program for a part of the phased software development
process described above. A Little-JIL program is a hierarchy of steps, each of which has
an interface and defines a scope in which a variety of additional elements are structured.
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Fig. 1. A phased software development process

Little-JIL is a visual language in which every step is represented by a named black bar
that is decorated by a variety of graphical badges. The step interface is represented by
annotations on a filled circle above the name of the step. The interface represents the
view of the step as seen from the caller of the step, including parameters, resources,
messages, and exceptions that may cross the interface. Little-JIL passes parameters as
value, result, or value-result. In Little-JIL a step is defined as either a root step or a
substep. However, a step defined in one part of a program can be referenced from other
parts of the program. Such a reference represents a reinstantiation and invocation of the
step in a new scope. Both the ability to construct process contexts and the ability to
invoke steps in multiple contexts are important for describing rework.

Fig. 2. Requirements activities
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Fig. 3. High-Level Design activities

The right-arrow in the root step in Figure 1 indicates that the substeps are to be
executed in sequence from left-to-right, starting with Requirements and continuing with
High-Level Design. Figures 2 and 3 show elaborations of the Requirements and High-
Level Design steps, respectively.1

The triangle to the right of Declare and Define Rqmt in Figure 2 indicates a post-
requisite, a step that is executed when Declare and Define Rqmt completes. In this
case, the post-requisite is a Requirements Review. If the post-requisite completes with-
out any errors, then Declare and Define Rqmt completes successfully. However, if er-
rors are found in the Requirements Review, a rqmtReviewFailed exception is thrown.
In Little-JIL, exception handling is scoped by the step hierarchy. So, in this case, the
rqmtReviewFailed exception will propagate to the Develop Rqmt Element step. The han-
dler attached here (beneath the red ”X” in the black bar) indicates that we should restart
the Develop Rqmt Element step and recreate that requirement element.

Once requirements elements have been declared and defined, we proceed to High-
Level Design. As can be seen in Figure 3, after all design elements have been declared
(by Declare Design Elements), a design-rqmts conformance check post-requisite is ex-
ecuted. During this review, we could check that all design elements have associated

1 In these and other Little-JIL figures, we show some information in comments (shaded boxes)
because the editor we use for creating Little-JIL programs does not show all information per-
tinent to a step in one view. The use of comments here to reflect information that is more
formally captured in other views does not reflect incompleteness in the overall process model.
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Fig. 4. Rework in the context of design

requirements elements. If we discover that there are design elements that lack adequate
support in requirements, we throw a MissingRqmts exception. In this context, this ex-
ception is handled by the exception handler called Add new requirements elements,
which is elaborated in Figure 4. Add new requirements elements first defines a new
requirements concept for use as input to the Declare and Define Rqmt step, which was
defined earlier in the Requirements phase in Figure 2.

In addition to the features illustrated in the figures above, Little-JIL also allows the
specification of resource requirements [29]. Managers of processes are very concerned
in general with resource allocation and utilization, so resource specification has first-
class status in Little-JIL. Resource-related cost issues are also of concern specifically
in relation to rework, and the accurate definition of processes has been considered a
prerequisite to first assessing the true costs of rework and then minimizing them [19].

Figure 5 shows a step Declare and Define Rqmt with a resource specification which
indicates that the agent for the step must be a Rqmt Engr. In this example, we specify
only the resource type Rqmt Engr. However, the specification can be any legal query that
our externally defined resource manager can execute. For example, we could specify
that Declare and Define Rqmt needs a Rqmt Engr with attributes indicating that he or
she knows UML use cases. At run-time, the resource specification is interpreted by
a management component of the Little-JIL runtime environment (Juliette) as a query
for a resource from the resource model. The resource manager will choose a resource
from those available in the resource model that satisfy the specification (or throw an
exception if the request cannot be satisfied).

Develop Rqmt Element

Declare and Define Rqmt

agent: Rqmt Engr agent | RqmtTeam

Fig. 5. Resource Specification
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This example incorporates two occurrences of rework. The first is part of the re-
quirements phase, when the failure of Declare and Define Rqmt triggers (via an excep-
tion) the reexecution of Develop Rqmt Element. In this case the rework is accomplished
by repeating the same activity in the same context. Of course, the process will have
progressed from the state in which the original work was done. The second occurrence
of rework is when Declare and Define Rqmt is referenced from the design phase. In this
case an activity that is first invoked in one context is later invoked in a different context,
but for essentially the same purpose. That is, to complete a specific requirement that
contributes toward the completion of the whole requirements specification.

2.3 Analysis

Based on analysis of the example-scenario program, what can we understand about
rework in the process? What is distinctive about the rework context and what is retained
from the context of the original work?

We can plainly see the contexts in which rework occurs, at specific points within
the requirements phase (the original context) in one case and within the design phase
(a different context) in the other case. The rework activity is explicitly represented by a
step in the process. This step has a specific interface and (in this example) a particular
postrequisite (entailing a requirements review when a new requirement is defined). The
rework activity is the same one used in initial development.

During initial development the activity is invoked as part of normal control flow but
both occurrences of rework are triggered by exceptions. Input parameters are passed
from different sources in the different contexts. In the requirements phase the principal
input is the result ultimately of requirements elicitation (not shown in the program),
whereas in the design phase the input is the output of the step Define new rqmt concept.

In its invocations for both initial development and rework, the activity carries the
same postrequisite, that is, it is subject to review of the requirements specification. This
reflects the continuity of purpose of the activity. However, if the review is not passed,
the exception that will be thrown will lead to very different exception-handling pro-
cesses. In the requirements phase, the exception simply triggers a reexecution of the
activity. In contrast, during the design phase, the exception may trigger a much more
elaborate repair process. Details are not elaborated here but, for example, repair might
involve changing the design elements, or even revisiting the requirements with the cus-
tomer, activities that would not be necessary, or even sensible, during the requirements
phase. The continuation after this handling is also different in this context: instead of re-
peating Declare and Define Rqmt, the process continues with the Add new requirements
elements step (as indicated by the right arrow on the edge).

When we use step Declare and Define Rqmt in the design phase, compared to the
invocation in the requirements phase, different resources can be acquired, for two rea-
sons. First, the state of the resource model might be different – different resources might
be available or new resources might have been added or removed, for example, due to
staffing changes. Second, Little-JIL allows an invoking step to narrow the specification
of the space of resources to be considered for an invoked step. The specification on the
edge in Figure 5 indicates that the agent must come from the RqmtTeam, which is a
resource collection passed from the parent step. In the reinvocation in the design phase,
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however, we can constrain the agent specification with a different annotation on the
edge (or, in fact, not constrain it at all to indicate that any Rqmt Engr will do).2

This example has shown that rework can be described with a variety of process
language constructs and semantics, some derived from conventional programming lan-
guages, some derived from other sources. Furthermore, because Little-JIL is executable,
rework specified this way can actually be executed according to a rigorous semantics,
thus providing effective, automated support. Little-JIL programs can be executed us-
ing Juliette [12], our interpretation environment for Little-JIL. Juliette faithfully exe-
cutes the programs according to the Little-JIL semantics by assigning work to execu-
tion agents at appropriate times. The agents choose among those steps assigned to them
which steps to execute, and when. In this way, we can allow the flexibility that is needed
by opportunistic development, while still providing an overall framework for the pro-
cess, including rework. Thus, by using rigorous semantics, both custom and borrowed
from general programming languages, we can provide automated support for realistic
software development processes.

3 Related Work

3.1 Rework Models

There is a common belief in the importance and inevitability of rework in real soft-
ware development. Surprisingly, though, the term is absent from the indices of many
software engineering textbooks (for example, [18, 30, 32]) and from descriptions of the
Capability Maturity Model [28].

Still, practitioners argue that software development does not proceed without re-
work and that rework should thus be modeled explicitly in software processes [19, 9].
Rework is assumed in many of the popular software development life cycles. These of-
ten describe the life cycle as a nominal flow with rework activities that cause cycles in
the nominal flow. Other life cycle models are explicitly based on iteration, for example
the Spiral Model [8] and the Unified Process [22]. However, in such life cycles the re-
peated iterations do not generally represent rework but new, incremental development.
Even in incremental development, some rework is bound to occur, and how rework (as
opposed to forward iteration) should be handled or represented is not well described.
Additionally, life-cycle models are typically presented at a relatively abstract level that
is independent of important, practical details of a rework context and activities that must
be captured for definitions of rework processes to be useful.

An opportunistic view of software development is seen in design tools such as
Argo [31] and Poseidon [4]. These provide automated support for design activities,
including automated ”critics” that can point out design flaws that may entail rework.
However, they do not support modeling of the design process in general or of design

2 Actually, different resources can be acquired for different invocations of the activity in the
same context, as between the initial work and rework in the requirements phase. That is be-
cause the resource pool may change from one invocation to the next and the resource specifi-
cation will be reevaluated upon each invocation. If the same resources should be used for each
invocation in one (or more) contexts, this can be specified explicitly in the resource query.
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rework in particular. Specific kinds of rework have also been studied (for example,
refactoring [17]). While this work is useful, automated support is generally lacking be-
cause triggers, and the resultant rework, are not formally defined and not integrated into
the overall development process. The lack of automated support deprives practioners of
those advantages cited in Section 1.

3.2 Modeling Languages

Workflow and process researchers have studied the software development process as a
formal object. This research has produced many process languages. These languages
have various constructs, in various combinations, that make them more or less well
suited for defining rework processes.

A feature of Little-JIL that seems to offer much benefit is control abstraction and the
ability to invoke a step from multiple contexts and with varying parameters. Some lan-
guages use procedural or functional abstractions based on conventional programming
languages (for example, HFSP [25] and APPL/A [33]). Comparable step or activity ab-
stractions are offered by other languages (such as Oikos [27], EPOS [15], ALF [10],
and JIL [34]). Another common approach is based on Petri nets and comparable sorts
of flow graphs, some of which also offer control abstraction (for example, SLANG [6],
FUNSOFT Nets [16]). Process languages based on finite state models also sometimes
offer control abstraction in the form of state or subchart abstraction (e.g., WIDE [11]
and STATEMATE [20]).

The main advantage of control abstraction and invocation semantics for definition
of rework processes is in allowing an activity that is initially invoked at one point to be
reinvoked at another if the work it achieved initially must be redone. Capturing rework
in this natural way in languages that lack these semantics is problematic.

Another relatively common notion is the work context. A work context is a scope
that groups tools, artifacts, tasks, and roles. Work contexts are often isolated scopes,
sometimes with transactional properties. Little-JIL lacks a notion of work context, but
supports the specification of artifacts, resources, agents, and substeps from which a
work context can be constructed by an external system. Some languages that support
work contexts directly are Merlin [23], ALF [10], and Adele-2 [7]. As defined in these
languages, work contexts can usually be invoked from (and return to) multiple contexts,
thereby supporting rework by reinvocation. Additionally, the various transactional prop-
erties of work contexts help to shield rework efforts from conflicts with ongoing activ-
ities. Several other process languages have transactional notions, including AP5 [14],
Marvel [24], and APPL/A [33]. HFSP [35] supports rework directly with a redo clause
which can be used to indicate reinstantiation of a step with different parameters.

Scoping is particularly important for rework. One reason is for the introduction and
binding of control and data elements that constitute a particular rework context.3 With
Little-JIL, for example, a step introduces pre- and postrequisites, substeps and their con-
trol flow, reactions and exception handlers, and resource and data parameters. Scoping

3 Strictly speaking it is not the scope that does this directly, but a construct, such as a step
in Little-JIL, with which a scope is associated. Nevertheless, it is natural to think of such
constructs as scopes, since we typically introduce them in a program for purposes of creating
a scope containing certain elements.
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is also important for rework as a means to control visibility. Control of visibility is espe-
cially important for rework because of the potential for interference between rework and
ongoing activities and the need to manage impacts to shared and dependent artifacts.
In Little-JIL, steps define a strictly local scope for data and a hierarchical scope for
exception handlers and execution agents. Languages based directly on general-purpose
programming languages or paradigms can adopt scoping rules from those approaches.
Many flow-graph and Petri-net based languages allow for hierarchical scoping of con-
texts by nesting [6, 16, 11]. Languages with step, activity, or work context abstractions
also use these as a means of introducing and binding process elements and controlling
visibility.

A number of process and workflow languages represent data definition or flow.
This is important in representing the artifacts that are subject to rework, dependent
artifacts, dependency relationships, and the flow of artifacts to (and from) rework ac-
tivities. Little-JIL represents the flow of artifacts between steps, as do practically all
software process and workflow languages. Little-JIL does not support data modeling
but is intended to be used with external data definition and management services. Some
process languages, such as Marvel [24] and Merlin [23], do not support full data defini-
tion but do enable attributes to be associated to artifacts. These can be used to reflect the
”state” of the artifact, including its state with respect to rework (for example, whether
it is ”complete”, ”outdated”, ”under revision”, and so on). A few languages offer full
data modeling capabilities (for example, APPL/A [33] and FUNSOFT Nets [16]), thus
allowing the definition of rework processes based on details of the data affected.

Organization and resource modeling are somewhat analogous to product modeling
and, like product modeling, provide the basis for an important form of parameterization
of rework contexts. Many workflow languages especially support some form of orga-
nization, role, or resource modeling(for example, [1–3]). Little-JIL allows resources,
including execution agents as a special case, to be specified for process steps, although
resource modeling itself is intended to be supported by an external service. Some other
process languages, such as StateMate [20] and FUNSOFT Nets [16], also incorporate
organization modeling as a first-class element. Other software-process languages, for
example, Merlin [23], EPOS [15], and ALF [10], allow the specification of particular
kinds of software-oriented resources, such as user roles and tools, that may be involved
in particular activities.

Exception handling is also an important part of rework processes. Rework is gen-
erally triggered by some form of exception, and rework processes can be viewed as a
form of exception handling. Exceptions and exception handling are common notions in
programming languages. APPL/A [33] adopted Ada-style exception handling, and its
successors JIL [34] and Little-JIL continue to represent exception handlers as first-class
elements. With Little-JIL we have found them important for specifying rework pro-
cesses (as discussed in Section 2). Surprisingly, few other software process languages
include general exception handling. There are many languages, that provide support for
the handling of exceptions that can be specified as consistency conditions (for exam-
ple, AP5 [14], Marvel [24], Merlin [23], EPOS [15], ALF [10], and others). Exception
handling in the programming-language style is uncommon in workflow languages, al-
though there are examples of it [2, 3, 1].
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4 Recommendations and Applications

Rework processes exhibit a variety of characteristics, both within themselves and in
relation to the overall software process. Many different kinds of language construct are
thus potentially relevant to the formalization of rework processes. In formalizing rework
processes in Little-JIL we have taken the approach of representing rework processes as
steps that can be invoked from multiple contexts (parent steps). These contexts can be
specialized in various ways to reflect the particular circumstances and requirements un-
der which initial development and rework occur. These contexts may differ with respect
to pre- and postrequisites, associated activities and reactions, and exception handlers.
The contexts in general and the rework activities in particular can be parameterized with
appropriate data, resources, and execution agents, according to their place and purpose
in the overall process. The assignment of resources and agents can be made statically
or dynamically, and control flow within the rework context and the rework process may
be more or less strictly determined, as appropriate for the process. In particular, control
flow may be ”hard coded”, left entirely open to the choice of the execution agent, or
controlled or not to various intermediate degrees.

From a programming-language perspective, the sorts of constructs and semantics
used in Little-JIL to support formalization of rework include control abstraction, in-
terfaces, parameters, control and data flow, scoping, messages (events) and message
handlers, and exceptions and exception handlers. We find that the context of rework,
which abstractly is a rich notion, is best specified using a flexible combination of these
constructs. We find that the rework activity, which can be highly parameterized, is well
represented by a procedure-like construct, particularly as that can allow the rework ac-
tivity to be invoked from and tailored to multiple points in a process at which rework
may be found necessary.

The particular collection of mechanisms used in Little-JIL was chosen because the
purpose of the language is to support specification of the coordination aspects of soft-
ware development and similar processes. That is, Little-JIL is intended to support the
specification of processes with particular emphasis on the orchestration of steps includ-
ing especially the binding of agents, resources, and artifacts to those steps. Additionally,
Little-JIL is intended to allow these aspects of processes to be specified and understood
by people who might lack extensive training or experience in programming but who
nevertheless require precise, rigorous process definitions. We believe that Little-JIL ad-
dresses these goals for rework processes.

As discussed in Section 3.2, there are a number of additional types of constructs
that other sorts of process languages include that can also be usefully applied to the
formalization of rework. These include (among others) transactional constructs, data
modeling, and consistency specification and enforcement. Data modeling, for example,
is appropriate for processes in which control depends closely on the details of data,
whereas transactions can be important where data integrity and consistency need to be
assured in the face of potentially conflicting activities. In general, constructs for the for-
malization of rework processes should be chosen according to the kind of information
to be captured, the purposes for which it is to be captured, and the circumstances under
which the process specification will be developed and used, including the availability
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of supporting technologies and the qualifications of modelers, analysts, and others who
work on or with the process specifications.

We believe that the formalization of rework processes using process-programming
languages affords benefits in three main areas. The first is process understanding. The
act of defining processes itself often brings a new understanding, and process defi-
nitions, once formulated, can be shared with process engineers, managers, planners,
customers, and collaborators. Because the process definitions are formal, they have a
precise and rigorous semantics that promotes clarity. This formality leads to the second
area of benefit, which is analyzability. Process programs are amenable to automated
analysis, which can be used to assess the correctness and other properties of rework
processes. This can be useful in verifying and evaluating large process programs that
may be beyond the scope of an individual to manually analyze in detail. Analysis of
Little-JIL programs is described in [13]. Formality also enables benefits of the third
kind, namely, those based on support for process execution. The executability of pro-
cess programs can support process automation and guidance, thereby promoting process
efficiency, control, and fidelity. Additionally, as a process executes, it can be automat-
ically monitored, and information about the process can be gathered for purposes of
measurement, analysis, evaluation, planning, and accounting.

Benefits in these areas are particularly applicable to rework. Formalization of a pro-
cess in a process-programming language can clarify where various kinds of work and
rework occur in a process and suggest opportunities to minimize and optimize rework
efforts. Analysis can help to compare alternative process models and to verify prop-
erties relating to the sequencing, timing, impact, and other properties of rework tasks.
Execution support can help to assure that rework activities are carried out as specified,
supported appropriately, coordinated with other activities, and accomplished correctly
and efficiently with minimal impact. Monitoring mechanisms can track initial devel-
opment and rework costs, help to show the benefits of rework mitigation efforts, and
facilitate planning and management for ongoing activities. For all of these reasons,
we believe that using process-programming languages to formalize rework processes
not only teaches us something about process languages but also has the potential for
significant practical benefit in an area of software development that continues to be
problematic and costly.

5 Conclusions and Future Work

Software-process programming holds the clear prospect of providing a number of ben-
efits to software engineers. Chief among these is the prospect that, through the use of
sufficiently powerful and precise languages, software-process programs can effectively
elucidate the nature of key software processes. In this paper, we have demonstrated
the potential of an effective process programming language to elucidate the concept of
rework. Rework is a common software development concept, referred to often by prac-
titioners, but seldom addressed or carefully defined in software engineering textbooks.
One explanation for this, we believe, is that the notion of rework requires specific se-
mantic notions in order to be adequately explained and understood. Such notions in-
clude procedure invocation, scoping, and exception management, among others. Thus,
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we have demonstrated that effective process languages can materially add to our under-
standing of commonly used software engineering terms and practices.

We have also demonstrated the potential for an executable software-process pro-
gramming language to aid practice by being the basis for more powerful, precise, and
effective guidance of practitioners. While the example given in this paper is relatively
simple, it nevertheless suggests that rework situations can become rather complex and
intricate. In such situations, the availability of an executable process definition to help
guide practitioners through the rework process, and then back to mainstream develop-
ment, would seem to have considerable value. In cases where there are multiple practi-
tioners engaged in multiple rework instances driven by multiple contingencies, a clear,
disciplined process, supported by effective process interpretation, would seem to offer
the potential for important savings in confusion, errors, effort, and cost.

While we are convinced of the potential for software-process programming to of-
fer advantages in clarifying the nature of key processes and effectively aiding practi-
tioners in performing these processes, the work described here is hardly a definitive
demonstration of these benefits. Thus, we propose to continue these investigations by
using process-programming languages to program increasingly complex and realistic
rework processes. In this work, we expect that our processes will entail more complex-
ity, greater use of exception management, more involved examples of process variation,
and more realistic specifications of resources. Having developed such processes, we
expect to use our process interpretation facilities to support their execution, in order to
gauge their value in guiding real practitioners engaged in real software development.

Through these continuing experiments we expect to gain greater understandings of
the sorts of linguistic semantic features of most value in supporting the representation of
rework processes, and indeed wider classes of realistic software processes. In addition
we expect that this research will lead to rework processes of known value and utility.
As these processes will have been captured in a rigorous language, they would then be
reproducible and usable by others, including real practitioners. In this way, we expect to
demonstrate how effective process languages can improve the state of software practice
through improved understandings of the nature of software processes.
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