

Generating Definite Descriptions
Non-Incrementali ty, Inference, and Data

Claire Gardent, Hélène Manuélian, Kristina
Striegnitz, and Marili sa Amoia

1. Introduction

The generation of referring expressions is a central task for systems that
automatically generate natural language texts. Indeed, the correct use of
natural language referential devices is crucial for generating successful
utterances, i.e., utterances that are easily and correctly understood by the
hearer, because referring expressions play an important role in linking an
utterance to the previous discourse, the non-linguistic situation the utterance
is produced in, and the knowledge of speaker and hearer.

One algorithm that has been particularly influential in this field is the
incremental algorithm for generating referring expressions presented in (Dale
and Reiter 1995). In this paper, we both extend this basic algorithm to deal
with more complex, inference based, definite descriptions and propose an
alternative, non-incremental algorithm which circumvents the shortcomings
arising from incrementali ty. Moreover, we present the results of a corpus
study on definite descriptions in French which suggest some research
directions that could help both widening the range of expressions that can be
generated and improving the form and content of generated definite
descriptions.

We start (Section 2) with a brief presentation of Dale and Reiter’s (1995)
incremental algorithm. In Section 3, we turn to the generation of bridging
descriptions. Bridging descriptions are definite descriptions that refer to
entities which are new to the discourse, but can be linked through world
knowledge to an entity that has been mentioned before. We look at the
contextual reasoning necessary for generating such definite descriptions and
then integrate it into a variant of Dale and Reiter’s basic algorithm. In
Section 4 we present results of a corpus study which examines the relations
that link bridging descriptions to the context. The results offer valuable
insights on what kind of information has to be provided for the generation of
bridging descriptions. Section 5 looks at another aspect of Dale and Reiter’s

2 Gardent, Manuélian, Striegnitz, and Amoia

algorithm and algorithms derived from it: incrementali ty. We identify a
number of problems that arise from incrementali ty and present an
alternative, non-incremental approach. Section 6, finally, summarises our
conclusions and points out open questions that further research on the
generation of referring expressions needs to address.

2. Dale and Reiter’s incremental algor ithm

The algorithm described in (Dale and Reiter 1995) provides the basis for
many of the later approaches to the generation of referring expressions
(Horacek 1997; Krahmer and Theune 2001; van Deemter 2002). As we will
also build on it, we will now sketch the way it works. The input to this
algorithm are

• the context: a set C of positive li terals associating entities with

relations of arbitrary arity such as shown in Figure 1,
• the target entity: the entity t which needs to be referred to.

Figure 1. Representation of a context for Dale and Reiter’s incremental algorithm.

The task of the algorithm is to find a distinguishing description for the
target entity, i.e., a subset L of C which uniquely identifies the target. In
other words, given the context, L should give so much information about the
target entity that it cannot be confused with any other entity mentioned in C.
For example, if, given the context of Figure 1, r2 is the target entity,
{rabbit(r2), black(r2)} would be a solution, as there are no other entities
which are rabbits and black in the context. However, if r1 is the target entity,
L={rabbit(r1), white(r1)} would not be suff icient, because there is one
distractor, i.e., one other entity which also fits the description given by L,
namely entity r3. L={rabbit(r1), white(r1), in(r1,h1), hat(h1)} would be a
solution in this case, because r1 is the only entity in C, which is a white
rabbit and is in a hat. Formally, this can be captured as follows: L is
uniquely identifying the target entity t, if D(t,L,C) = {t} with D(t,L,C) the set
of objects satisfying the description or more formally:

{rabbit(r1), rabbit(r2), rabbit(r3), hat(h1), hat(h2), bathtub(b1),
white(r1), black(r2), white(r3), in(r1, h1), in(r2, h2), in(r3,b1)}

 Generating definite descriptions 3

D(t,L,C) = {o| ∃ substitution s such that s(t)=o and s(L)⊆ C}.

The algorithm builds such a distinguishing description incrementally. That
is, it starts with L=∅, adds one property and checks whether this already
suff ices to distinguish the target from all other entities in the context. If not,
it adds the next property and checks again. The algorithm proceeds in this
way until either the description uniquely identifies the target or all properties
are used up. In this latter case, the algorithm fails as no distinguishing
description can be buil t.

initialise
1. targets ← <t>
2. L ← ∅
main loop: until no more entities are left on the target list
3. while targets ≠ <> do
4. o ← targets[1]
if the first entity on the target list is uniquely identified
5. if D(o,L,C) = { o}
then take it from the list
6. then
7. targets ← targets[2,length(targets)]
else try to extend the description
8. else
9. Ps = applicable_li terals(L,C)
10. if Ps = ∅ then return fail
11. p = select_one(Ps)
12. update targets and L with p
13. endif
14. endwhile
15. return L

Figure 2. Dale and Reiter’s incremental algorithm.

The pseudo-code of the algorithm is given in Figure 2. In the beginning,
L=∅ and the ordered list for keeping track of which entities have to be
described contains only the target. Whenever a li teral that involves other
entities than the target entity is added to the description, these entites are
added to the target list. The algorithm then has to make sure that the

4 Gardent, Manuélian, Striegnitz, and Amoia

description uniquely identifies these entities as well as the initial target
entity.

The main loop of the algorithm is controlled by this target list. It stops
when the list is empty. Otherwise it takes the first element of the list and
checks whether the current L uniquely identifies it. If so, that target is
removed from the list. Otherwise, L has to be extended. If that is not possible
because there are no applicable literals left in C, the algorithm fails.
Applicable literals are not yet part of L, they mention the target, and there is
at least one distractor to which this li teral doesn’ t apply. If there are several
applicable li terals, the algorithm has to choose one. The incremental
algorithm presented in (Dale and Reiter 1995) assumes a domain dependent
ordering of properties which determines this choice. Other variants of the
algorithm might use slightly different mechanisms.

The table in Figure 3 ill ustrates how the algorithm that we just described
would incrementally build a description for entity r1 given the context in
Figure 1. For the purpose of this example, we assume that type properties
are chosen before colour properties, which are chosen before locations.

targets L distractors notes
<r1> ∅ all entities extend L
<r1> {rabbit(r1)} {r1, r2,, r3} extend L
<r1> {rabbit(r1), white(r1)} {r1, r3} extend L
<h1, r1> {rabbit(r1), white(r1), in(r1,h1)} {h1, b1} extend L
<h1, r1> {rabbit(r1), white(r1), in(r1,h1), hat(h1)} {h1} h1 unique
<r1> {rabbit(r1), white(r1), in(r1,h1), hat(h1)} {r1} r1 unique
<> {rabbit(r1), white(r1), in(r1,h1), hat(h1)} return L

Figure 3. An example run of the incremental algorithm.

3. Definite descriptions and inference

The algorithm outlined in the previous section represents the context as a set
of atomic facts. The definite descriptions it generates all refer to entities
explicitly mentioned in this context and only contain information explicitly
given in this context. In this section, we want to look at an extension of this
base algorithm that uses a richer notion of context and can therefore generate
definite descriptions which leave implicit how exactly the referent is linked

 Generating definite descriptions 5

to the context. We will first present the data that we want to capture and
then describe the extended algorithm.

3.1. Inference based definite descriptions

The prototypical use of definite descriptions is as in the following example.

(1) A woman came in. The woman was wearing a beautiful hat.

In this example, the definite description is referring to an entity that has
explicitly been mentioned before and is only using properties that have
explicit been attributed to that entity. This kind of definite descriptions is
also known as directly co-referr ing definite descriptions. However, corpus
studies have shown that this prototypical use of definite descriptions only
accounts for about 30% of all definite descriptions that are found in natural
text (Poesio and Vieira 1998). Poesio and Vieira found that additional 24%
were what we call inference based definite descriptions. We distinguish two
types: indirectly co-referr ing definite descriptions and bridging
descriptions. The following is an example of an indirectly co-referring use.

(2) An actress entered the stage. The woman was wearing a big hat.

The definite NP the woman is referring to an entity that has explicitly been
mentioned before but uses information that has not explicitly been attributed
to that entity before. In (2) this information is a generalisation of what is
already known about the referent, and hence, could be inferred from the
context if some background information of the form ‘actresses are women’
was known. (3) shows examples where this is not the case.

(3) a. John has bought a new car. The Volvo delights him.

b. I met a man yesterday. The bastard stole my money.

In (3a), the descriptive content of the definite description is a specification
of what’s already known about the referent (Volvos are kinds of cars). In
(3b), the definite description is giving a re-description of its referent; it adds
information which is not in any relation with what’s already known about
the referent. In the following, we will concentrate on indirectly referring
definite descriptions of the type shown in (2).

6 Gardent, Manuélian, Striegnitz, and Amoia

The second type of inference based definite descriptions, bridging
descriptions, are definite descriptions that refer to an entity that has not
explicitly been mentioned before. However, it is related to an entity that has
been mentioned before. Here is an example of such a case.

(4) John entered the room. The ceiling was very high.

The ceili ng mentioned in the second sentence is a part of the room mentioned
in the first sentence. Moreover, our general knowledge about rooms tells us
that every room has a ceili ng. So, when hearing that there is a room, we
already know that there also must be a ceili ng. (5a) shows a bridging
description that refers to an entity of which we don’ t know before that it
exists. Not all rooms have windows. Therefore, the existence of the window
doesn’ t follow from the context. However, it is quite probable in the given
context, as most rooms have windows. This is not the case in (5b). The fact
that there is a chandelier neither follows from the context nor is it probable
in the given context. But even as it is not common nowadays for rooms to
have chandeliers, it is plausible to link the chandelier to the room as rooms
typically have lamps and a chandelier is a type of lamp; moreover, it is a
type of lamp that usually is found in rooms.

(5) a. John entered the room. The windows looked out to the

 bay.
b. John entered the room. The chandelier was sparkling
 brightly.

Before we go on, we have to introduce some more terminology. In the rest of
this section, we will follow Dale and Reiter and call the referent of the
definite description that we are going to generate the target. The entity in the
discourse context that the target is linked to is called anchor. This link
between target and anchor is established via the identity relation in the case
of co-reference and via some bridging relation in the case of bridging
descriptions. Clark (1977), who introduced the term bridging, identified
various different types of bridging relations, such as the part-of relation,
semantic roles of verbs, reasons, consequences. For the moment, we will use
a fairly general part-of relation as our only bridging relation. We take this
relation to subsume all meronymic relations including functional parts
(Kleiber 1997); e.g., presidents are (functional) parts of companies. See

 Generating definite descriptions 7

Section 3 for results of a corpus study aiming at a better understanding of
what kinds of relations can act as bridging relations.

3.2. An algorithm for generating inference based definite descriptions

We will now see how the basic algorithm of Section 2 can be extended with
the necessary knowledge and reasoning to generate inference based definite
descriptions. First, we will determine what kind of information sources are
involved in the generation of these definite descriptions and re-specify the
representation of the context accordingly. Then, we will characterise the
conditions under which a definite description can be thought to be uniquely
identifying when taking into account this additional knowledge and
reasoning. Finally, we integrate these conditions into the incremental
algorithm and ill ustrate the workings of the extended algorithm by going
through an example.

3.2.1. The discourse context

In the incremental algorithm, the context is a list of positive li terals
recording information that is known to both the hearer and the speaker. It
specifies entities and lists their properties. To deal with bridging definites
and indirectly anaphoric definites, this notion of context has to be extended
in two ways. First, we need a model of the relevant world and lexical
knowledge containing information of the type: restaurants have cooks,
poodles are pets. Second, we have to be able to access knowledge that the
speaker might have about the situation and which is not shared by the
hearer. The definite description in (5a), for instance, refers to an entity which
the hearer does not know about before hearing the sentence. For generation
we have to model this fact. Our context will therefore consist of three parts
now:

Discourse Model (DM): A list of positive li terals modelli ng the previous

discourse. This is essentially the context used in the incremental
algorithm. Entities which are mentioned in the discourse model are
called discourse old entities.
E.g.: DM = {restaurant(r), Italian(r), …}

8 Gardent, Manuélian, Striegnitz, and Amoia

Background Knowledge (BKL): Lexical and world knowledge shared by
the speaker and the hearer. BKL together with the DM is the
shared knowledge (ShKL), i.e., the information that both the
speaker and the hearer know about.

 E.g.: BKL = {∀ x (restaurant(x) → ∃ y (cook(y) ∧ part-of(y,x))),
 …}
Speaker Model (SM): Additional knowledge of the speaker.

E.g.: DM = {cook(c), part-of(c,r), …}

3.2.2. Intended and potential anchors

Now, that we have the enriched representation of the context, we have to
examine how it interacts with the requirements under which a definite
description can be used. In other words, what does it mean now for an entity
to be uniquely identified by a definite description? To answer this question,
we employ the terms intended anchors and potential anchors. Intended
anchors (IA) are those discourse old entities which the speaker intends to act
as the anchor of the target, and potential anchors (PA) are those entities
which from the hearer’s point of view (i.e., taking into account only shared
knowledge) could act as anchors of the target.

In the basic algorithm, the only intended anchor is always the target
itself. With bridging descriptions this definition obviously has to be
loosened. (It is, in fact, one of the defining characteristics of bridging
descriptions that the anchor is different from the target.) We will say that
intended anchors are all those discourse old entities o, such that either o is
equal to the target, or it follows from the speaker’s knowledge that o is
related to the target via a bridging relation. For instance: Let c be the target.
If c is mentioned in DM, then c is an intended anchor. Furthermore, if SM

�
bridge(o,c), then o is an intended anchor of c as well .

The potential anchors of a target t given the description L in the context
C are given by D(t,L,C) in the basic algorithm. Also this definition needs to
be loosened now. The potential anchors for the definite description the cook,
for example, should include not only all the cooks in the discourse model but
also all restaurants. Potential anchors will therefore be all discourse old
entities o that, given the shared knowledge ShKL (i.e., DM and BKL
together), fulfill one of the following conditions:

 Generating definite descriptions 9

1. o fits the description L of t. For instance: L = {cook(c)}, t = c, and
ShKL � � � � � � � � � This is the case if cook(o) ∈ DM.

2. o is related (via a bridging relation) to some entity which fits the
description. For instance: L = {cook(c)}, t = c, and ShKL � ∃ x
(bridge(x,o) ∧ cook(x)). This is the case if restaurant(o) ∈ DM and
∀ x (restaurant(x) → ∃ y (cook(y) ∧ part-of(y,x))) ∈ BKL.

3. o is related (via a bridging relation) to some entity which fits a
generalisation of the description. For instance: L = {chandelier(c)}, t
= c, and there is a predicate G such that ShKL � ∃ x (bridge(x,o) ∧
G(x)) and BKL � 	
 � �
 � � � � � � 	 � → G(c). This is the case if room(r)
∈ DM, and ∀ x (room(x) → ∃ y (furniture(y) ∧ part-of(y,x))) ∈
BKL, ∀ x (chandelier(x) → lamp(x)) ∈ BKL, and ∀ x (lamp(x) →
furniture(x)) ∈ BKL.

Note that the above conditions don’ t allow to link protential anchors to the
target via chains of bridging relations. Here is an example to ill ustrate why
we want to exclude this. Assume that L = {cook(c)}, t = c, university(u) ∈
DM, canteen(r) ∈ DM, ∀ x (university(x) → ∃ y (canteen(y) ∧ part-
of(y,x))) ∈ BKL, and ∀ x (canteen(x) → ∃ y (cook(y) ∧ part-of(y,x))) ∈
BKL. In this situation, the university u should not be a potential anchor for
target c (contrary to what would be predicted if chaining of bridging
relations was allowed), since otherwise Example (6) could be produced.

(6) John went to the university. ???The cook wore a white apron.

Now, that we have defined intended and potential anchors1, we can look at
the role they play in determining whether the use of a definite description is
contextually appropriate. As we have just seen, intended anchors are those
entities in the discourse model that the speaker wants to link the referent of
the definite description to, and potential anchors are those entities that the
definite description could possibly be linked to when considering only the
hearer’s knowledge. A successful definite description therefore has to avoid
mismatches between the set of intended anchors and the set of potential
anchors. The hearer has to recognise the anchors intended by the speaker as
potential anchors, i.e., IA(t,SM) ⊆ PA(t,L,ShKL), and he has to be able to
rule out all those entities as anchors which are not intended to be anchors by
the speaker, i.e., PA(t,L,ShKL) ⊆ IA(t,SM). The first condition, which we
call famili arity, ensures that the information which the speaker uses in the
description lets the hearer establish the link between target and anchor. The

10 Gardent, Manuélian, Striegnitz, and Amoia

second condition, which we call uniqueness of the anchor, makes sure that
the definite description contains enough information to rule out all
distracting anchors.

These two conditions explain why the definite description the cook is not
appropriate in (7a) and (7b): it violates the famili arity condition (zoos don’ t
usually have cooks) and the uniqueness condition (which of the two
restaurants is the anchor?), respectively.

(7) a. John took Jim to the zoo. ??? The cook was wearing a

white hat.
 b. There is an Italian restaurant and a Chinese one at the end

of the street. ??? The cook is very good..

The two conditions do, however, not explain why the page in (8) is
inappropriate as well . For cases of this type, we need one more condition
saying that the target must be unique wrt. the anchor. I.e., it must be
coherent with the context to assume that there is only one entity which fits
the description and is related to the anchor via a bridging relation.

(8) John took the book back to the shop. The page was missing.

We conclude this section with a summary of the concepts and conditions that
have just been introduced and on which the algorithm in the following
section will be based.

inteded anchors (IA(t,SM)): set of discourse old entities that the
speaker wants to relate the target to.

potential anchors (PA(t,L,ShKL)): set of discourse old entities that,
given only the hearer’s knowledge, could act as anchors for the
target.

famili ar ity condition: IA(t,SM) ⊆ PA(t,L,ShKL).
uniqueness condition I : PA(t,L,ShKL) ⊆ IA(t,SM).
uniqueness condition II : It is consistent with the context to assume

that the target is the only entity which fits the description and is
related to the anchor via a bridging relation.

 Generating definite descriptions 11

3.2.3. Extending the incremental algorithm

Now, we will modify the basic algorithm presented in Section 2, so that it
works with the extended representation of the context and uses the notions of
intended and potential anchors to decide when to terminate successfully and
when to fail . The pseudo-code is given in Figure 4.

initiali se
1. targets ← <t>
2. L ← ∅
main loop: until no more entities are left on the target li st
3. while targets ≠ <> do
4. o ← targets[1]
if the description rules out intended anchors of o
5. if IA(o,SM) – PA(o,L,ShKL) ≠ ∅
then return and classify L as unfamili ar
6. then
7. return <unfamiliar, L>
8. endif
if o is uniquely identified
9. if PA(o,L,ShKL) ⊆ IA(o,SM) and o is unique wrt. IA(o,SM)
then take it from the target li st
10. then
11. targets ← targets[2,length(targets)]
else try to extend the description
12. else
13. Ps = applicable_literals(L,C)
14. if Ps = ∅ then return <non-uniquely-identified, L>
15. p = select_one(Ps)
16. update targets and L with p
17. endif
18. endwhile
19. return <uniquely-identified, L>

Figure 4. The extended algorithm.

Like the basic algorithm, the extended algorithm starts with L = ∅. It then
adds li terals to L until the uniqueness condition is satisfied, while making
sure that the famili arity condition is not violated. There are two ways in

12 Gardent, Manuélian, Striegnitz, and Amoia

which this algorithm can fail to build a uniquely identifying description. In
one case, there are no more applicable li terals which could be added to L but
the uniqueness condition is not yet satisfied. This is similar to the situation in
which the basic algorithm fails. The other case is new: the algorithm fails if
no description preserving the famili arity condition can be buil t. Applicable
li terals are computed as in the basic algorithm, but we furthermore give
preference to li terals that preserve the famili arity condition.

We will now go through an example to ill ustrate how the extended
algorithm works. Assume that the task is to generate an expression referring
to entity c given the following context:

BKL: ∀ x (restaurant(x) → ∃ y (cook(y) ∧ part-of(y,x)))
DM: restaurant(r1), italian(r1), restaurant(r2), chinese(r2)
SM: cook(c), part-of(c,r1)

That is, there are two restaurants in the context, an Italian one and a Chinese
one, and the speaker wants to refer to the cook of the Italian one, who has
not been mentioned before. The table in Figure 5 shows how the description
and the status of the famili arity and the uniqueness condition evolve.

targets description PA IA
<c> ∅ all entities {r1} Fam.: ✓

Uniq.: ✗
<c> {cook(c)} {r1, r2} {r1} Fam.: ✓

Uniq.: ✗
<r1, c> {cook(c), part_of(c, r1)} {r1, r2} {r1} Fam.: ✓

Uniq.: ✗
<r1, c> {cook(c), part_of(c, r1),

restaurant(r1)}
{r1, r2} {r1} Fam.: ✓

Uniq.: ✗
<r1, c> {cook(c), part_of(c, r1),

restaurant(r1), italian(r1)}
{r1} {r1} Fam.: ✓

Uniq.: ✓
<c> {cook(c), part_of(c, r1),

restaurant(r1), italian(r1)}
{r1} {r1} Fam.: ✓

Uniq.: ✓
< > {cook(c), part_of(c, r1),

restaurant(r1), italian(r1)}
⇒ description is uniquely

identifying

Figure 5. An example run of the extended algorithm.

 Generating definite descriptions 13

3.3. Summary and Discussion

Starting from a tripartite context representation we have defined conditions
that govern the generation of inference based definite descriptions. Based on
these we have then extended the base algorithm from Section 2.

This algorithm has been implemented using description logic to specify
the context and the description logic reasoning system RACER (Haarslev
and Möller 2001) to carry out the necessary inferences.

What counts as a bridging relation is a question that is quite central for
our algorithm: if the definition is too loose the algorithm will overgenerate,
i.e., it will produce bridging descriptions that cannot be linked to the context
by a human reader/hearer, and if it is too strict it will undergenerate in the
opposite direction. In the following section, we will describe a corpus study
which was aimed at getting a better idea of how the relation bridging
relation should be defined and what kind of knowledge would have to be
coded in the context knowledge bases in order to be able to generate bridging
descriptions.

What we have described in this section concentrated on the contextual
reasoning involved in the generation of inference based descriptions. In
particular, we have ignored the fact that bridging descriptions, similar to
pronouns, require highly salient anchors (Gundel, Hedberg, and Zacharski
1993). So, to be able to use our algorithm for the generation of referring
expressions within larger texts, it would have to be augmented with a
representation of salience in order to fil ter out potential anchors which are no
longer accessible. See, e.g., (Krahmer and Theune 2001) for a proposal
addressing this question.

4. Corpus study

The algorithm in the previous section requires a knowledge base that
specifies which concepts can be linked through bridging relation. When
building a system for generating referring expressions in a given domain one
therefore has to decide which relations linking concepts of that domain can
act as bridging relations and hence have to be included in the knowledge
base. To get a better understanding of what relations can be involved in
bridging descriptions we conducted a corpus study on French data. In this
section, we describe this corpus study and discuss the results.

14 Gardent, Manuélian, Striegnitz, and Amoia

We start (Section 4.1) with a brief description of the corpus that we used.
The annotation was done in two passes. In the first pass, which is described
in Section 4.2, we classified all definite descriptions according to their
referential status (co-reference, bridging, first mention) in order to identify
the bridging descriptions. In the second pass, we annotated through which
relations the referents of the bridging descriptions were linked to their
anchors. The results of this part of the study are presented in Section 4.3.

4.1. Corpus and annotation method

We used a 65,000 words subcorpus extracted from the French PAROLE
corpus1 (Lecomte 1997). This corpus consists of articles taken from the
newspaper Le Monde and covers a wide range of topics (sports, culture,
poli tics, economics and leisure). It is annotated at the morpho-syntactic level
in accordance with the annotation scheme MULTITAG/MULTEXT of the
GRACE project (Beaumont, Lecomte, and Hathout 1998). In particular,
each determiner is marked as either definite, indefinite, contracted (i.e.,
contraction of a preposition and a determiner), partitive, demonstrative,
possessive, relative, exclamative or interrogative.

We used Gsearch (Corley et al. 2001) for automatically identifying the
definite descriptions and MMAX (Müller and Strube 2001) to support the
annotation process.

All annotations that are presented in the following were done and agreed
on by the authors.

4.2. Referential status of definite descriptions

The first step of the corpus study aims at identifying bridging descriptions.
To this end, we carried out a first annotation pass to classify definite
descriptions with respect to their referential status. We use an annotation
scheme which is loosely based on the proposals in (Poesio and Vieira 1998)
and which distinguishes the following categories.

direct co-reference: A nominal antecedent can be found. It refers to
the same entity as the target definite description. The head
nouns of the antecedent NP and the target NP are the same.

indirect co-reference: A nominal antecedent can be found. It refers to
the same entity as the target definite description. The head

 Generating definite descriptions 15

nouns of the antecedent NP and the target NP are the not same.
Indirect co-reference can be realised by using lexical relations
such as hyponymy, hypernymy and synonymy.

br idging:. A nominal or verbal antecedent can be found. It refers to a
different entity than the target definite description, but, due to
general lexical or world knowledge, the referent of the target
NP is interpreted as a part of the referent of the antecedent or
as an object linked to the it.

first mention: There is no antecedent in the text that fits one of the
previous conditions.

The results of this first annotation pass are given in Figure 6.

direct co-reference 612 6,96%
indirect co-reference 869 9,89%
bridging 416 4,73%
first mention 6892 78,42%
total 8789 100%

Figure 6. Results of the first annotation pass.

As can be seen, the proportion of first mention definites is very high (almost
80%). In comparison, Poesio and Vieira (1998) report a rate of around 50%,
and Fraurud (1990) found that 60.9% of the definite descriptions in Swedish
text are first mention. There are several factors which might be responsible
for this difference. One is that in our definition the first mention class plays,
to a certain extent, the role of the “waste paper basked”: everything which
doesn’ t fulfil the criteria of any of the other classes gets classified as first
mention. In particular, event or discourse deictic anaphora are first mention
according to our definition. But there are also factors related to the language
and text type that might play a role. First, many country names, institution
acronyms and idioms in French involve a definite article (e.g., la France, la
Côte d'Ivoire for country names; le CNRS, la CNCL for acronyms and avoir
la main for idioms). Second, we classified repeated use of similar definite
descriptions separated from each other by a long distance as first mention.
Third, we found a high number of generic uses. Fourth, the corpus contains
a very high percentage (19.63%) of containing inferable (i.e., definite
descriptions such as the heat of the sun which are in fact famili ar through
their explicit relation to a known entity).

16 Gardent, Manuélian, Striegnitz, and Amoia

With respect to the generation task, these results indicate that only a very
small portion of the data can be handled by the Dale and Reiter algorithm
which in essence deals only with direct co-reference cases that is, 6.96% of
the cases found in our corpus. Extending the algorithm as is proposed in
Section 3 to inference base definite descriptions increases the coverage by
14.6%. Nonetheless, there remain 78.42% of first mention definites which
cannot be generated. To properly treat these, the existing algorithms have to
be extended (i) to deal with discourse new information in definite noun
phrases and (ii) to generate containing inferables.

4.3. Bridging relations

Now, we come to the second part of our corpus study which is aimed at
answering the following two questions. 1.) What relations are used to link
the referents of bridging descriptions to their anchor? 2.) What knowledge
sources provide these relations: is it a lexical relation (e.g., meronymy,
hyponymy, synonymy) whose encoding is part of resources such as
WordNet? Is it given by world knowledge? Or is it given by a lexicographic
definition?

We will first present the typology of bridging relations that we developed
based on classifications proposed in the li terature and the evidence that we
found in our corpus. Then we show the distribution of bridging relations in
our corpus wrt. to this typology and discuss the implications those results
have for the generation of bridging descriptions.

4.3.1. A typology of bridging relations

The annotation scheme we propose classifies bridging descriptions into five
broader classes: set membership, thematic, definitional, co-participant,
non-lexical. We now discuss each of these in more detail showing, in
particular, how a specific relation is identified and how its semantics is
established. (Also see (Gardent, Manuélian, and Kow 2003).)

Set membership. This class covers cases where the target is either a
member or a subset of the set referred to by the antecedent (a group of
similar individuals); e.g., seminars/the last seminar. The semantics of this
bridging relation is set membership or subset. The anchor must be a set of
individuals and the target an individual or a set of individuals.

 Generating definite descriptions 17

Thematic. As ill ustrated by the pair murder/murderer, the target can be
related to the anchor via a thematic relation (a murderer is the agent of a
murder). More generally, a thematic bridge links an individual to an event
via a thematic relation defined by the thematic grid of the event. As a result,
the property denoted by the noun characterising the individual must be
subsumed by the characterisation given by the definition of the thematic
grid.

Definitional. In this case, the implicit bridging relation holding between
anchor and target is given by the dictionary definition of either the target or
the anchor. For instance, in the pair operation/convalescence a
convalescence (the target) can be defined to be the period following an
operation (the anchor) or a disease so that in this case, the bridging relation
between anchor and target is one of temporal succession.

In a definitional bridge, the definition usually imposes a sortal restriction
which must be satisfied by the related object (anchor or target). The property
declared (in the text) to hold of the related object must thus be subsumed by
the property requested to hold of the related object by the definition.

We distinguish three kinds of definitional relations: meronymic relations,
relations between individuals and an attribute, and relations between
individuals and an associate.

Meronymic relations are relations which can be expressed using
constructions with part of or has. For two objects X and Y to be in a
meronymic relation, it must be possible to say that X usually has Y and that
Y usually is a part of X. The meronymic relation implies (spatial, temporal
or abstract) inclusion and can only hold between entities of the same
ontological types (individuals, events etc.). Following (Winston, Chaff in,
and Hermann 1987), we assume various types of meronymic relations, such
as whole/part, whole/piece, individual/stuff, collection/member, place/area,
event/subevent; for a more precise definition of each of these relations, we
refer the reader to (Winston, Chaff in, and Hermann 1987). Additionally, we
assume an individual/function meronymic relation (e.g., a club/the
president) which involves a definitional bridge holding between individuals
with one of the related individuals being described by his profession or
function wrt. the other (Kleiber 1997).

Contrary to the meronymic relations, the two other types of definitional
bridging relations do not imply inclusion but a simple implication relation (a
teacher implies some audience, a surface implies an object etc.). More
specifically, individual/att r ibute pairs (e.g., a person/the age) involve a
definitional bridge holding between individuals with one of the related

18 Gardent, Manuélian, Striegnitz, and Amoia

individuals being a feature (i.e., something that takes a value within a given
domain). Individual/associate pairs, such as question/answer, may involve
two individual, one individual and an event or two events. Neither of the two
is a part of the other, but a dictionary definition will define one in terms of
the other.

Co-participants. There are cases where the relation holding between
target and anchor is mediated by a third object which is mentioned in the
dictionary definitions of both target noun and antecedent. For instance, the
pair trip/seat is related by the relation “ in vehicle used for” which can be
reconstructed from the definition of the target (“a seat is a place reserved for
sitting in a vehicle or a room”) and of the anchor (“a trip is a displacement
of persons by some means of transport”). In such cases, the definitions of the
target and the anchor involve two properties Pa and Pt which stand in a
subsumption relation (here, vehicle is subsumed by means of transport).

Non lexical. Finally, there are cases such as Grenoble/the region or
fight/the dead where no amount of lexical knowledge will help and where the
relation holding between target and anchor is given either by discourse
structure (circumstantial) or by our knowledge of the world and of how
things work (WKL).

4.3.2. Distribution of bridging relations in the corpus

In a second annotation pass, we classified 359 bridging descriptions
according to the typology just presented. The results, given in Figure 7,
suggest the following preliminary conclusions.

First, the importance of the meronymic relation, which is often taken to
be the canonical example of a bridging relation, has been confirmed: 52% of
the bridging descriptions involve this relation. Since, moreover, the
meronymy relation is encoded in WordNet, this suggests that many cases of
bridging definite descriptions could be processed using WordNet (Fellbaum
1998). We thus did a first manual search through WordNet, checking for
each bridging description involving a meronymic relation encoded in
WordNet (i.e., whole/part, collection/member and individual/stuff) to check
whether it was related by a direct or indirect (i.e., inherited through a
hyponym) meronymic link to its anchor. Unfortunately, we found that only
38 of our 187 meronymic cases were present in WordNet. However, a closer
look at the data shows that only a relatively small number of different object
sorts are involved in meronymic relations in our corpus (town parts, country

 Generating definite descriptions 19

parts, enterprise parts, etc.). This suggests that it should be possible, given a
domain and sublanguage, to extend WordNet with the meronymic
information necessary to process most of the bridging descriptions involving
this relation; or alternatively, to develop the appropriate meronymic
knowledge.

Class No. of occurrences Proportion
set membership 21 5.85%
thematic 19 5.29%
definitional 283 78.83%

individual/att r ibute 32 8.91%
individual/associate 64 17.83%

meronymic relations 187 52.09%
whole/part 89 24.80%

whole/piece 0 0%
individual/stuff 0 0%

collection/member 22 6.13%
place/area 26 7.24%

event/subevent 16 4.46%
individual/function 34 9.47%

co-par ticipants 8 2.23%
non lexical 28 7.80%

circumstantial 17 4.74%
WKL 11 3.06%

Figure 7. Bridging relations.

Second, and again this is important for processing purposes, the number

of cases involving non-lexical knowledge is relatively small with 4.7% of the
definite descriptions involving a circumstantial relation (i.e., non knowledge
based spatial or temporal inclusion e.g., laguna/the inhabitants) and 3%
involving world knowledge (no lexical relation can be found between anchor
and target e.g., war/survivors, fight/dead). In such cases, the relation
between target and anchor has to be found either (in the first case) through
discourse structure (the structure of discourse determines in some way the
relation between predicates, arguments and modifiers) or (in the second type
of cases) through some complex reasoning (a fight can result in a person
being hurt; one form of being hurt is to be dead etc.).

20 Gardent, Manuélian, Striegnitz, and Amoia

Third, an important class of bridging that does not appear in the li terature
but that turned out to be quantitatively non negligible is the class of
individual/associate pairs (17.8%). This class covers cases where the
lexicographic definition of the target implies the existence of a target related
entity whose sort subsumes the sort of the anchor. The bridging relation in
such cases is the relation given by the lexicographic definition (cf. examples
as operation/convalescence, athletics/national federation, question/answer
investigation/witness report). For computational processing, the
individual/associate class is problematic because it presupposes the
availability of lexicographic definitions usable computationally.

Finally, the thematic class which represents 5.3% of the found bridging
descriptions, could be processed using a tool such as FrameNet (Baker,
Fill more, and Lowe 1998) in which words are associated with a frame (or
script) specifying the frame elements (aka thematic roles) likely to
participate in the scenario evoked by that frame. A preliminary manual
search shows that this is indeed the case – for 14 of the 19 thematic cases,
we found a frame corresponding to the anchor and containing the target as a
frame element.

In summary, it seems that for the data found in the PAROLE corpus,
roughly 65% of bridging definite descriptions could be processed using
either FrameNet, WordNet or some limited form of lexical reasoning. The
remaining 35% requires either lexicographic definitions (17.8%), essential
attribute information (9%), discourse structure information (4.7%) or deep
knowledge based reasoning (3%).

5. A non-incremental algor ithm for generating definite descriptions

Both algorithms that we have seen so far, the base algorithm of Section 2 as
well as the inference based version of Section 3, build the distinguishing
description incrementally, i.e., the output is constructed one step at a time
and without backtracking. Most extensions to Dale and Reiter’s algorithm
that have been proposed follow this incremental approach. In particular, its
extension by van Deemter (2002) to boolean properties and non singleton
sets of individuals is incremental. Similarly, the algorithms described by
Horacek (1997) and Stone (1998) interleave the incremental computation of
a distinguishing description with an incremental construction of the syntactic
tree associated by the grammar with this description. Each property selected
to better identify the target set is used to retrieve a lexical entry whose

 Generating definite descriptions 21

semantics is this property and this lexical entry is immediately integrated
into the current description. Thus, in these doubly incremental approaches,
both the content and the form of a definite description are determined
greedily, i.e., locally and without backtracking.

In this part of the paper, we explore the feasibili ty and usefulness of
developing an alternative non-incremental algorithm. We start (Section 5.1)
by presenting a non-incremental, constraint-based algorithm for generating
distinguishing descriptions and showing how it can be integrated in a surface
realisation algorithm. We then show that such a non-incremental algorithm is
advantageous in at least two ways: it provides linguistically and cognitively
better distinguishing descriptions than the incremental algorithm (Section
5.2); and it provides top-down guidance for the surface realisation algorithm
which better supports the realisation of definite descriptions (Section 5.3).

5.1. A constraint-based non-incremental algorithm for generating definite
descriptions

As Dale and Reiter (1995) show, the problem of finding minimal
distinguishing descriptions can be formulated as a minimal set cover
problem and is therefore known to be NP hard (Garey and Johnson 1979).

The alternative algorithm we propose is therefore based on the use of
constraint programming (CP), a paradigm aimed at eff iciently solving NP
hard combinatoric problems. Instead of following a generate-and-test
strategy which might result in an intractable search space, CP minimises the
search space by following a propagate-and-distribute strategy where
propagation draws inferences on the basis of eff icient, deterministic
inference rules and distribution, i.e., case distinctions for a variable value, is
performed only when necessary because no further propagation steps are
possible (Roy and Haridi 2003).
The basic algor ithm. Consider the definition of a distinguishing description
given in (Dale and Reiter 1995).

Let r _ be the intended referent, then a set L _ of attribute-value
pairs is a distinguishing description for r if the following two
conditions hold:
C1: Every attribute-value pair in L applies to r: that is, every
element of L specifies an attribute value that r possesses.
C2: For every other entity c of the context, there is at least
one element l of L that does not apply to c: that is, there is an

22 Gardent, Manuélian, Striegnitz, and Amoia

l in L that specifies an attribute-value that c does not possess.
l is said to rule out c.

This definition can easily be li fted to the case where the target is not a single
entity but a set S of entities. In this case, every attribute-value pair in L has
to apply to all r∈S. This definition can be stated in terms of constraints over
sets as follows.

I: the universe;
P+

x: the set of properties some entity x has;
P−

x = P − P+
x the set of properties some entity x does not have;

P+
s = ∩x∈ s P

+
x: the set of properties true of all elements of S;

P−
s = P − ∪x∈ s P

+
x the set of properties false of all elements of S;

L = 〈P+,P−〉 is a basic distinguishing description for S iff :
1. P+ ⊆ P+

s
2. P− ⊆ P−

s and
3. ∀c ∈ I−S,(P+−P+

c) ∪ (P−∩P+
c) > 0

A description for the target set S is represented by a pair of set variables
〈P+,P−〉 constrained to be a subset of the set of positive properties of S, P+

s
(i.e., properties that are true of all elements in S), and of the set of negative
properties of S, P−

s (i.e., properties that are true of none of the elements in
S), respectively. The third constraint ensures that the conjunction of
properties thus buil t eliminates all distractors, i.e., each element of the
universe which is not in S. More specifically, it states that for each distractor
c there is at least one property P such that either P is true of (all elements in)
S but not of c or P is false of (all elements in) S and true of c.

If the problem is formulated in this way, it can be solved using a
constraint programming language such as Mozart/Oz (Programming
Systems Lab 1998) which supports set variables. Every assignment of
values to variables which satisfies the constraints in the definition given
above is then a possible solution, i.e., a distinguishing description for the
given target set in the given context.

Additionally, a distribution strategy needs to be made precise which
specifies how to search for solutions. We want to ensure that smaller
solutions are preferred and therefore distribute (i.e., make case distinctions)
over the cardinali ty of the output description P+∪P− starting with the
lowest possible value. That is, first the algorithm will try to find a
description 〈P+,P−〉 with cardinality one, then with cardinali ty two etc. The

 Generating definite descriptions 23

algorithm stops as soon as it finds a solution. In this way, the description
output by the algorithm is guaranteed to always be the shortest possible
description.

 c1 c2 c3 p1 b1

cup • • •
plate •
bowl •
red • • •
blue • •

Figure 8. An example context.

To ill ustrate this we will assume the context in Figure 8. Now, let our

target set S = { c1, c2} . Then P+
s = { cup, red} and P−

s = { plate, bowl, red} .
There is no description containing only one negative or positive property that
distinguishes the elements of S from all other elements in the universe. So,
the algorithm will l ook for one consisting of two properties and finds the
following two possibili ties: L = 〈{ cup, red} , ∅〉 (the red cups) or L =
〈{ cup} , { blue} 〉 (the cups which are not blue). Both of these descriptions
satisfy all three constraints given above and distinguish c1 and c2 all other
entities in the context.

Extending the algor ithm with disjunctive properties. To take into
account disjunctive properties, the constraints used can be modified as
indicated follows:

LS = LS1 ∨ … ∨ LSn is a distinguishing description for a set of individuals _

iff :
• 1 � n � S
• S = S1 ∪…∪ Sn
• For 1 � i � n, LSi is a basic distinguishing description for Si

That is, the algorithm looks for a tuple of sets such that the union S1 ∪…∪
Sn of the tuple’s elements is the target set S and such that for each set Si in
that tuple there is a basic distinguishing description LSi. The resulting
description is the disjunctive description LS1 ∨ … ∨ LSn where each LSi is a
conjunctive description of Si. As before solutions are searched for in
increasing order of size (i.e., of li terals occurring in the description) by
distributing over the cardinali ty of the resulting description.

24 Gardent, Manuélian, Striegnitz, and Amoia

Integration with surface realisation. To permit the generation of
definite descriptions, the constraint-based algorithm for generating
distinguishing descriptions presented above needs to be integrated with
surface realisation. Assuming, as is usual, that the generation process is
driven by communicative goals and, in particular, by informing and
describing goals, this can be done by simply updating the current goal
semantics with distinguishing descriptions. Whenever an entity must be
described which is discourse old, a distinguishing description will first be
computed for that entity using the above constraint solver and then added to
the current goal semantics thereby driving further generation. Given some
overall goal semantics, the generator then seeks to realise this goal semantics
by building a phrase structure tree that (i) realises that goal semantics, (ii) is
syntactically complete and (iii) is pragmatically appropriate.

Implementation. The constraint solver and the surface realisation
algorithm sketched above have been implemented within the INDIGEN

generator using the concurrent constraint programming language Mozart/Oz
(Programming Systems Lab 1998) which supports set variables ranging over
finite sets of integers and provides an eff icient implementation of the
associated constraint theory. The proof-of-concept implementation includes
the constraint solver described above and its integration in a chart-based
generator integrating surface realisation and inference. The integration of the
constraint solver within the generator permits realizing definite NPs
including negative information (the cat that is not white) and simple
conjunctions (The cat and the dog).

5.2. Problems with incremental content determination

As argued in (Gardent 2002), the incremental algorithm, especially when
generalised to boolean properties and sets of individuals, might yield
cognitively and linguistically inadequate distinguishing descriptions.

Consider for instance a context such as pictured in Figure 9 and suppose
the target set is { x1, x2, x3, x4} .

 Generating definite descriptions 25

 white small medium big dog rabbit cat horse sheep
x1 • • •
x2 • • •
x3 • •
x4 • • •
x5 • • •
x6 • • •
x7 • •
x8 • •
x9 • •
x10 • •

Figure 9. The dog, the rabbit, and the cat.

Recall that to build a distinguishing description for a given target set, the
incremental algorithm goes through the list of available properties in a given
order and selects from it those properties which at each step (i) have the
target set in their extension (all objects in the target set must have the
selected property) and (ii) eliminate some distractor (the extension of the
selected property may not be contained in the current distractor set).

The ordering of the properties is fixed in two ways. First, the disjunctive
length is considered: the algorithm starts with disjunctive properties of length
one, then goes on to disjunctive properties of length two etc. (cf. van
Deemter 2001). Second, properties are ordered using sortal information (cf.
Dale and Reiter 1995). For instance, the search through the available
properties for the above example could be fixed to follow the order:

type < size < colour

Given these assumptions, the steps followed by the incremental algorithm
to build a distinguishing description for the target set { x1, x2, x3, x4} in the
context given in Figure 9 might be as sketched in Figure 10.

First, a non-disjunctive type property is looked for whose extension
contains the target set and is not contained in the current distractor set
namely { x5, x6, x7, x8, x9, x10} . Two properties satisfy these criteria: ¬horse
and ¬sheep. Suppose the property ¬horse is selected. It is then added to the
distinguishing description (which is initially empty) and the distractor set is
updated to the intersection of the current distractor set with the extension of
the selected property namely, { x5, x6, x7} .

26 Gardent, Manuélian, Striegnitz, and Amoia

 selected property distractor set
disjunct of length 1

type ¬ horse { x5, x6, x7}
size ¬ medium { x5}

colour No applicable property. { x5}
disjunct of length 2

type No applicable property. { x5}
size No applicable property. { x5}

colour No applicable property. { x5}
disjunct of length 3

type dog ∨ rabbit ∨ cat r { x5}

Figure 10. Generating descriptions of sets with the incremental algorithm.

Next the “size properties” are considered and the property ¬medium is
selected reducing the distractor set to { x5} . No colour property satisfies the
selection criteria hence disjunctive properties of length two are considered
none of them satisfies the selection criteria. When considering disjunctive
properties of length three, the disjunctive type property dog ∨ rabbit ∨ cat is
selected thus yielding an empty distractor set. At this stage generation halts
yielding the distinguishing description:

(¬horse) ∧ (¬ medium) ∧ (dog ∨ rabbit ∨ cat)

That is, the incremental algorithm will i n this case yield a distinguishing
description which can be paraphrased as

the dogs, rabbits and cats that are not horses and that are not medium size

when a much shorter and more natural distinguishing description would
in this case be the one paraphrased as

the dogs, the rabbits and the cats.

More generally, this example ill ustrates three types of problems for the
incremental approach:

• Contextually redundant descriptions: the description produced
might be contextually redundant in that a property present in the
description might be entailed in the given context by some other
information present elsewhere in the description. For instance the
(¬medium) property is contextually redundant in the above
description as in the given context, dogs, rabbits and cats are all
either big or small hence not medium size.

 Generating definite descriptions 27

• Epistemically redundant descriptions: the description produced
might be epistemically redundant in that a property it contains
follows from some other information present elsewhere in the
generated description and from our general knowledge about the
world. For instance the (¬horse) property is epistemically redundant
in the above description since we know that dogs, rabbits and cats
cannot be horses.

• Logically complex descriptions: the description produced might be
unnecessarily complex due to a high number of logical connectives.
For instance, the description generated for the above example by the
incremental algorithm contains two negations, two disjunctions and
two conjunctions whilst a much simpler distinguishing description
exists which contains only two disjunctions.

In contrast, because it produces minimal descriptions, the non-incremental
algorithm for computing distinguishing descriptions presented in the
previous section is not affected by any of these problems.

5.3. Problems with incremental surface realisation

In case of success, the output of the incremental algorithm is a distinguishing
description, which is a conjunction of possibly complex properties whose
denotation equals the target set.

To further realise this distinguishing description into a definite
description, a kind of “double incrementali ty” has sometimes been proposed
(Horacek 1997; Stone 1998) which consists in interleaving the incremental
algorithm with surface realisation, i.e., with the construction of the syntactic
tree associated by the grammar with the input semantic representation. Each
selected property is used to retrieve a lexical entry whose semantics is this
property and this lexical entry is immediately integrated into the tree which
has been generated so far. In this way, it is ensured that the distinguishing
description can be realised as a definite description (when the current tree
cannot be updated with the selected lexical entry, another property is
selected).

Thus in these doubly incremental approaches, it is not only the content
but also the form which is determined greedily, i.e., locally and without
backtracking. In other words, no global information is available which could

28 Gardent, Manuélian, Striegnitz, and Amoia

help in planning the definite NP. As we shall now see, this lack of global
information may result in very unnatural definite NPs.

Consider again the above example. As noted, the distinguishing
description produced by the incremental algorithm could in this case be

(¬ horse) ∧ (¬ medium) ∧ (dog ∨ rabbit ∨ cat)

If , as suggested by the doubly incremental algorithms, properties are realised
in order of selection, the successive realisation phases will roughly be as
follows:

the non horses
the non medium sized non horses
the non medium sized non horses that are either dogs, rabbits or cats

where, as noted above, a much more natural realisation of the input
distinguishing description would be: the dogs, rabbits and cats that are not
horses and that are not medium size.

The problem is that the order in which the incremental algorithm selects
properties and the order in which properties can best be realised are
governed by completely orthogonal constraints. More generally, the lack of
global information concerning the semantics of the NP to be generated
means that the overall structure of the NP cannot be optimised. So, for
instance, the generator is in this case unable to recognise that the “best”
definite description realising the computed distinguishing description is a
three disjuncts NP with two conjoined modifiers (rather than a one disjunct
NP with three disjoined modifiers).

In contrast, a surface realiser that is guided by a goal semantics (e.g., a
distinguishing description) can use this semantics to plan and optimise the
structure of the generated constituent (e.g., a definite description).

To start with, since the semantic information to be realised is given
globally, realisation can be dictated by the grammar on the basis of the
selected lexical entries and of their syntactic combinatorics rather than on
the order in which properties are selected.

Further, various optimisation strategies can be devised based on the
structure of the semantic input. Thus for instance, the surface realiser can
detect from the form of the input delivered by the constraint solver described
in the previous section (in essence a disjunctive normal form, i.e., a
disjunction of conjunctions of li terals) the number of conjuncts contained in
the generated definite description – and recursively the number of disjuncts
each conjunct should contain. Similarly, because negative and positive
properties are kept separate, realisation strategies can be devised to optimise

 Generating definite descriptions 29

the structure of the NP (if the distinguishing description contains several
negative properties, for instance, antonyms can be searched for to minimise
the number of negations). Finally, aggregation techniques could be applied
to the input so as to avoid the repetition of semantic material appearing
several times in the input distinguishing description.

A further advantage of the non-incremental algorithm presented in
Section 5.1 is that it provides a richer input for surface realisation. Recall
that the information output by the incremental algorithm focuses on property
names rather than on property denotations. As a result, appropriate decisions
regarding the singular/plural distinction cannot be made: since the
cardinality of the extension of the property to be realised is unknown, it is
not possible to decide whether the realised constituent should be plural
(cardinali ty greater than one) or singular (cardinali ty equal to one).

In contrast, the input delivered by the non-incremental algorithm to the
surface realisation component is a sequence of descriptions L1-n and of
corresponding sets S1-n each description Li in L1-n is a distinguishing
description for the corresponding set Si in S1-n and the sequence of
descriptions S1-n is interpreted as a disjunction. This pairing of descriptions
with sets, means that the correct number information can be determined: if a
set has cardinality one, the corresponding NP will be singular; else the NP
should be plural.

In sum, although the constraint based approach, not being incremental,
does not allow for a tight interleaving of content planning and surface
realisation and thus does not guarantee that the planned distinguishing
description can actually be realised, it provides top-down guidance for the
realiser which better supports the generation of syntactically optimal definite
descriptions. Note further that the reverse problem holds for doubly
incremental algorithms: although they guarantee that a definite description is
buil t whenever a distinguishing description exists, they fail to guarantee that
a referring expression is generated for those cases where no distinguishing
description exists. Indeed in such cases, the doubly incremental algorithm
will fail whereas the non-incremental algorithm will both detect the lack of
distinguishing description and propose an alternative referring expression
(e.g., an indefinite NP).

30 Gardent, Manuélian, Striegnitz, and Amoia

6. Conclusions

Starting from Dale and Reiter’s (1995) incremental algorithm for generating
definite descriptions, we have proposed two kinds of modifications to this
algorithm.

First, we showed how the incremental algorithm can be interleaved with
reasoning to support the generation of both indirectly co-referring definite
descriptions and bridging descriptions. And second, we argued that non-
incremental versions of the Dale and Reiter’s algorithm should be explored
both to compute distinguishing descriptions and to construct the associated
definite descriptions. We proposed such an algorithm based on the use of set
constraints and constraint programming.

These two extensions go in two different directions and address different
problems, but, obviously, we will have to find a way to reconcile them and ,
e.g., extend the non-incremental constraint based algorithm to incorporate
reasoning.

But also independently each of the approaches points to interesting
questions concerning the generation of referring expressions. In our
implementation of the non-incremental algorithm, we assumed that minimal
solutions are the best solutions. This is, of course, an approximation that is
not always true. It would be interesting to investigate and model the factors
influencing the “quali ty” of a definite description. We believe that the
constraint based approach we proposed provides us with an environment
where we can experiment with different quali ty related restrictions.

The algorithm for the generation of inference based definite descriptions,
on the other hand, touches on the issue of knowledge representation for
natural language processing. It relies on the existence of knowledge bases
specifying relations between concepts. In particular, the knowledge bases
have to specify which concepts are linked by a relation that can be used as a
bridging relation. To get a better understanding on what information has to
be modelled in order to generate bridging descriptions, we undertook a
corpus study. The results of this study show that the necessary knowledge is
largely restricted to certain kinds of lexical knowledge, such as meronymy
and verb frames. So, we are optimistic that, for a given domain, the
knowledge bases necessary for the generation of bridging descriptions can be
buil t. The next step would now be to actually build a larger knowledge base
for some domain, investigating to what extend we can use existing resources
(WordNet, FrameNet) and how we can do so in a systematic way. Another
interesting question is whether the knowledge can be learned from corpora or

 Generating definite descriptions 31

the web using, e.g., techniques as proposed by Bunescu (2003) or Markert,
Nissim, and Modjeska (2003). This larger knowledge base could then also
be used to test and evaluate our algorithm.

The corpus study has furthermore shown that the generation of referring
expressions has to look at non-anaphoric uses of definite descriptions. They
make up such a large percentage of all definite descriptions found in corpora
that one cannot assume to generate natural sounding text without being able
to properly account for this phenomenon. A second corpus study (Manuélian
2003) examining the distribution of given vs. new information in definite
descriptions is a first step in this direction.

Notes

1. For a more detailed and more formal definition of intended and potential
anchors see the technical report available at http://www.coli .uni-
sb.de/~kris/papers/iwcs4-book.ps.gz.

2. The PAROLE corpus was created by the CNRS research unit ATILF
(Analyse et Traitement Informatique de la Langue Française) and was made
available to us in the context of a collaboration between ATILF and the
LORIA research unit.

References

Baker, Colli n F., Charles J. Fillmore, and John B. Lowe
 1998 The Berkeley FrameNet project. Proceedings of the 36th Annual

Meeting of the Association for Computational Linguistics and
the 17th International Conference on Computational
Linguistics: 86–90.

Beaumont, Catherine, Josette Lecomte, and Nabil Hathout
 1998 Etiquetage morpho-syntaxique du corpus "Le Monde" pour les

besoins du projet PAROLE. Technical Report, INALF, Nancy.
Bunescu, Razvan
 2003 Associative anaphora resolution: a web-based approach.

Proceedings of the EACL-Workshop: The Computational
Treatment of Anaphora: 47–52.

Clark, Herbert H.
 1977 Bridging. In Thinking: Readings in Cogniti ve Science. P. N.

Johnson-Laird and P. C. Wason (eds.), Cambridge University
Press: 411–420.

32 Gardent, Manuélian, Striegnitz, and Amoia

Corblin, Francis
 1987 Indéfini, Défini et Démonstratif. Genève/Paris: Librairie DROZ.
Corley, Steffan, Martin Corley, Frank Keller, Matthew W. Crocker, and Shari

Trewin
 2001 Finding syntactic structure in unparsed corpora: The Gsearch

corpus query system. Computers and the Humanities 35: 81–94.
Dale, Robert
 1992 Generating Referr ing Expressions. Cambridge, Massachussetts:

MIT Press.
Dale, Robert and Ehud Reiter
 1995 Computational Interpretation of the Gricean Maxims in the

Generation of Referring Expressions. Cogniti ve Science 18:
233–263.

Deemter, Kees van
 2002 Generation of Referring Expressions: Boolean Extensions of the

Incremental Algorithm. Computational Linguistics 28 (1): 37–
52.

Fellbaum, Christiane (ed.)
 1998 WordNet: An electronic lexical database. Cambridge,

Massachussetts: MIT Press.
Fraurud, Kari
 1990 Definiteness and the processing of NPs in natural dicourse.

Journal of Semantics 7: 395–433.
Gardent, Claire
 2002 Generating minimal definite descriptions. Proceedings of the

40th Annual Meeting of the Association for Computational
Linguistics: 96–103.

Gardent, Claire, Hélène Manuélian, and Eric Kow
 2003 Which bridges for bridging descriptions. Proceedings of the

EACL Workshop on Linguisticall y Interpreted Corpora: 69–76.
Garey,Michael R. and David S. Johnson
 1979 Computers and Intractabilit y: a Guide to the Theory of NP-

Completeness. San Francisco: W. H. Freeman.
Gundel, Jeanette K., Nancy Hedberg, and Ron Zacharski
 1993 Cogniti ve status and the form of referring expressions in

discourse. Language 69: 274–307.
Haarslev, Volker and Ralf Möller
 2001 RACER system description. Proceedings of the International

Joint Conference on Automated Reasoning: 701–705.

 Generating definite descriptions 33

Horacek, Helmut
1997 An algorithm for generating referential descriptions with

flexible interfaces. Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics: 206–213.

Kleiber, Georges
 1997 Des anaphors associatives méronymique aux anaphors

associatives locatives. Verbum 19(1-2): 25–66.
Krahmer, Emiel and Mariët Theune
 2001 Eff icient context-sensiti ve generation of referring expressions. In

Information Sharing: Givenness and Newness in Language
Processing, Kees van Deemter and Roger Kibble (eds.). CSLI
Publications: 223–264.

Lecomte, Josette
 1997 Codage MULTEXT-GRACE pour l'action GRACE. Technical

Report, INALF, Nancy.
Manuélian, Hélène
 2003 Coreferential definite and demonstrative descriptions in French:

a corpus study for generation. Proceedings of the 8th ESSLLI
Student Session: 169–180.

Markert, Katja, Malvina Nissim, and Natalia Modjeska
 2003 Using the web for nominal anaphora resolution. Proceedings of

the EACL-Workshop: The Computational Treatment of
Anaphora: 39–46.

Müller, Christoph and Michael Strube
 2001 MMAX: A tool for the annotation of multi -modal corpora.

Proceedings of the 2nd IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems: 45–50.

Poesio, Massimo and Renata Vieira
 1998 A corpus-based investigation of definite descriptions use.

Computational Linguistics 24(2): 183–216.
Programming Systems Lab Saarbrücken
 1998 Mozart/Oz Webpage: http://www.mozart-oz.org.
Roy, Peter Van and Seif Haridi
 2003 Concepts, Techniques, and Models of Computer Programming.

Webpage: http://www.info.ucl.ac.be/people/PVR/book.html. To
be published by MIT Press.

Stone, Matthew
 1998 Modalit y in dialogue: planning, pragmatics and computation.

Ph.D. thesis, Department of Computer & Information Science,
University of Pennsylvania.

34 Gardent, Manuélian, Striegnitz, and Amoia

Winston, Morton E., Roger Chaff in, and Douglas Hermann
 1987 A taxonomy of part-whole relations. Cogniti ve Science 11: 417–

444.

