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1. Introduction

The generation d referring expressons is a central task for systems that
automatically generate natural language texts. Indeed, the correct use of
natural language referential devices is crucial for generating successul
utterances, i.e., utterances that are esily and correctly understood by the
hearer, because referring expressons play an important role in linking an
utterance to the previous discourse, the nontlinguistic situation the utterance
is produced in, and the knowledge of speaker and hearer.

One algarithm that has been particularly influential in this field is the
incremental algarithm for generating referring expressons presented in (Dale
and Reiter 1995. In this paper, we both extend this basic algorithm to deal
with more complex, inference based, definite descriptions and propose an
aternative, nonincremental algorithm which circumvents the shortcomings
arising from incrementality. Moreover, we present the results of a corpus
study on dfinite descriptions in French which suggest some research
directions that could hep both widening the range of expressions that can be
generated and improving the form and content of generated definite
descriptiors.

We start (Section 2) with abrief presentation d Dale and Reiter’s (1995
incremental algorithm. In Section 3, we turn to the generation d bridging
descriptions. Bridging descriptions are definite descriptions that refer to
entities which are new to the discourse, but can be linked through world
knowvledge to an entity that has been mentioned before. We look at the
contextual reasoning recessary for generating such definite descriptions and
then integrate it into a variant of Dale and Reter’s basic algorithm. In
Section 4 we present results of a corpus dudy which examines the relations
that link bridging descriptions to the context. The results offer valuable
insights onwhat kind d information has to be provided for the generation d
bridgng descriptions. Section 5 looks at another aspect of Dale and Reiter’s
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algorithm and algorithms derived from it: incrementality. We identify a
number of problems that arise from incrementality and present an
alternative, nonincremental approach. Section 6, finally, summarises our
conclusions and points out open questions that further research on the
generation d referring expressons needs to address

2. Daleand Reiter'sincremental algorithm

The algorithm described in (Dale and Reiter 1999 provides the basis for
many o the later approaches to the generation d referring expressons
(Horacek 1997 Krahmer and Theune 2001 van Deamter 2002). As we will
also build onit, we will now sketch the way it works. The input to this
agorithm are

* the context: a set C of positive literals associating entities with
relations of arbitrary arity such as shownin Figure 1,
» thetarget entity: the entity t which needs to be referred to.

{rabhit(ry), rabtit(rs), rabhit(rs), hat(h), hat(hy), bathtub(by),
white(r;), black(rz), white(rs), in(r1, hy), in(rz, hy), in(rs,b.)}

Figure 1. Representation of a context for Dale and Reiter’sincremental algorithm.

The task of the algorithm is to find a distingushing description for the
target entity, i.e, a subset L of C which uniqudy identifies the target. In
other words, given the context, L should gve so much information about the
target entity that it canna be confused with any aher entity mentioned in C.
For example, if, given the context of Figure 1, r, is the target entity,
{rabbit(r,), black(r;)} would be a solution, as there are no dher entities
which are rabhits and black in the context. However, if ry isthetarget entity,
L={rabbit(r,), white(r)} would na be sufficient, because there is one
distractor, i.e., one other entity which also fits the description gven by L,
namdy entity r;. L={rabht(r1), white(ry), in(ri,h,), hat(h;)} would be a
solution in this case, because r; is the only entity in C, which is a white
rabbit and is in a hat. Formally, this can be captured as follows: L is
uniquely identifying the target entity t, if D(t,L,C) = {t} with D(t,L,C) the set
of objects stisfying the description a more formally:
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D(t,L,C) = {o| [Jsubstitution s such that s(t)=o0 and s(L )7 C}.

The algorithm builds such a distinguishing description incrementally. That
is, it starts with L=/7, adds one property and checks whether this already
suffices to dstinguish the target from all other entities in the context. If nat,
it adds the next property and checks again. The algorithm proceeads in this
way until either the description uniquely identifies the target or all properties
are used up. In this latter case, the algorithm fails as no dstinguishing
description can be built.

initialise

1. targets — <t>

2. L 0O

main loop: until no more entities are left on the target list
3. whiletargets # <> do

4, 0 « targety1]

if thefirst entity on the target list isuniquely identified
5. if D(o,L,C) = {0}

then takeit from thelist

6. then

7. targets — targety[2,length(targets)]

elsetry to extend the description

8. dse

9. Ps = applicable literals(L,C)

10. if Ps=0 then return fail

11 p= sdect_ong(Ps)

12. uplate targets and L with p

13 endf

14. endwhile

15. returnlL

Figure 2. Dale and Reiter’ sincremental algorithm.

The pseudo-code of the algorithm is given in Figure 2. In the beginning,
L=[J and the ordered list for keguing track of which entities have to be
described contains only the target. Whenever a literal that invaves other
entities than the target entity is added to the description, these aitites are
added to the target list. The algorithm then has to make sure that the
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description uniquely identifies these ettities as wel as the initial target
entity.

The main loop of the algorithm is controlled by this target list. It stops
when the list is empty. Otherwise it takes the first dement of the list and
checks whether the current L uniqudy identifies it. If so, that target is
removed from thelist. Otherwise, L has to be extended. If that is nat possble
because there are no appicable literals left in C, the algorithm fails.
Applicable literals are nat yet part of L, they mentionthe target, and thereis
at least one distractor to which this literal doesn’t apply. If there are several
applicable literals, the algorithm has to choose ore. The incremental
algorithm presented in (Dale and Reiter 1995 asaumes a domain dependent
ordering d properties which determines this chace. Other variants of the
algorithm might use slightly diff erent mechanisms.

Thetable in Figure 3 ill ustrates how the algarithm that we just described
would incrementally build a description for entity ry given the context in
Figure 1. For the purpose of this example, we asaume that type properties
are chosen before colour properties, which are chosen before locations.

targets L distractors nates
<ry> 0 all entities extend L
<r;> {rablt(r,)} {ra, ra, rs} extendL
<r;> {rablt(r,), white(r,)} {rq, rs} extend L
<hy, r1> {rabht(r), white(ry), in(ry,h.)} {hy, bi} extend L
<hy, r1> {rabht(ry), white(ry), in(ry,hd), hat(h))}  {ha} h; unique
<r;> {rablt(r,), white(r,), in(ry,hy), hat(hy)} {ri} r, unique
<> {rabbt(r,), white(r,), in(r1,hy), hat(h,)} return L

Figure 3. An example run of the incremental algorithm.

3. Definite descriptions and inference

The algorithm outlined in the previous sction represents the context as a set
of atomic facts. The definite descriptions it generates all refer to entities
explicitly mentioned in this context and orly contain information explicitly
given in this context. In this sction, we want to look at an extension d this
base algorithm that uses aricher nation d context and can therefore generate
definite descriptions which leave implicit how exactly the referent is linked
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to the context. We will first present the data that we want to capture and
then describe the extended algorithm.

3.1. Inference based definite descriptions
The prototypical use of definite descriptionsis asin the following example.
Q) A woman came in. The woman was wearing a keautiful hat.

In this example, the definite description is referring to an entity that has
explicitly been mentioned before and is only using properties that have
explicit been attributed to that entity. This kind d definite descriptions is
also knawvn as diredly co-referring definite descriptions. However, corpus
studies have shown that this prototypical use of definite descriptions only
accounts for about 30% of all definite descriptions that are found in natural
text (Poesio and Vieira 1998. Poesio and Viera found that additional 24%
were what we call inference based definite descriptions. We distinguish two
types. indiredly oo-referring dfinite descriptions and bridging
descriptions. Thefollowingis an example of an indrectly co-referring use.

2 An actressentered the stage. The woman was wearing a bg hd.

The definite NP the woman is referring to an entity that has explicitly been
mentioned before but uses information that has nat explicitly been attributed
to that entity before. In (2) this information is a generalisation of what is
already known about the referent, and hence, could be inferred from the
context if some background information d the form ‘actresses are women’
was known. (3) shows examples where thisis nd the case.

3 a John ha bough a new car. The Volvo delights him.
b. | met a man yesterday. The bastard stole my money.

In (3a), the descriptive content of the definite description is a spedfication
of what's already known about the referent (Volvos are kinds of cars). In
(3b), the definite descriptionis giving a re-description of its referent; it adds
information which is not in any relation with what's already knavn about
the referent. In the following, we will concentrate on indrectly referring
definite descriptions of the type shownin (2).
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The second type of inference based ddfinite descriptions, bridgng
descriptions, are definite descriptions that refer to an entity that has nat
explicitly been mentioned before. However, it is related to an entity that has
been mentioned before. Hereis an example of such a case.

(4) Johnentered the room. The celling was very high.

The celling mentioned in the second sentence is a part of the room mentioned
in the first sentence. Moreover, our general knowledge about rooms tells us
that every room has a celling. So, when hearing that there is a room, we
aready know that there also must be a celing (5a) shows a bridging
description that refers to an entity of which we dont know before that it
exists. Not al rooms have windows. Therefore, the existence of the window
doesn’t follow from the context. However, it is quite probable in the given
context, as most rooms have windows. This is nat the case in (5b). The fact
that there is a chanddier neither follows from the context nor is it probable
in the given context. But even as it is not common navadays for rooms to
have chanddiers, it is plausible to link the chanddier to the room as rooms
typically have lamps and a chanddier is a type of lamp; moreover, it is a
type of lamp that usually is foundin rooms.

5 a John entered the room. The windows looked out to the
bay.
b. John entered the room. The chandelier was garkling
brightly.

Before we go on we have to introduce some more termindogy. In therest of
this sction, we will follow Dale and Reiter and call the referent of the
definite description that we are gaing to generate the target. The ettty in the
discourse context that the target is linked to is called anchor. This link
between target and anchor is established via the identity relation in the case
of co-reference and via some bridgng relation in the case of bridgng
descriptions. Clark (1977, who introduced the term bridging, identified
various different types of bridging relations, such as the part-of reation,
semantic roles of verbs, reasons, consequences. For the moment, we will use
a fairly general part-of relation as our only bridging relation. We take this
reation to subsume al meronymic rdations including functional parts
(Kleber 1997); eg., presidents are (functional) parts of companies. See
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Section 3 for results of a corpus dudy aiming at a better understanding d
what kinds of relations can act as bridging relations.

3.2. Analgorithm for generating inference based definite descriptions

We will now seehow the basic algorithm of Section 2 can be extended with
the necessary knowledge and reasoning to generate inference based definite
descriptions. First, we will determine what kind d information sources are
invaved in the generation d these definite descriptions and re-specify the
representation d the context accordingy. Then, we will characterise the
condtions under which a definite description can be thought to be uniquey
identifying when taking into acoount this addtional knowledge and
reasoning. Finally, we integrate these condtions into the incremental
algorithm and ill ustrate the workings of the extended algorithm by gang
through an example.

3.2.1. Thediscourse mntext

In the incremental algorithm, the context is a list of positive literals
recording information that is known to both the hearer and the speaker. It
specifies entities and lists their properties. To deal with bridging dfinites
and indrectly anaphoric definites, this nation d context has to be extended
in two ways. First, we nead a modd of the rdevant world and lexical
knowledge containing information d the type restaurants have ©oks,
poodles are pets. Second we have to be able to access knowledge that the
speaker might have about the situation and which is nat shared by the
hearer. The definite descriptionin (5a), for instance, refers to an entity which
the hearer does nat know about before hearing the sentence. For generation
we have to modd this fact. Our context will therefore consist of threeparts
now:

Discourse Model (DM): A list of positive literals moddli ng the previous
discourse. This is esentially the context used in the incremental
algorithm. Entities which are mentioned in the discourse modd are
called discourse old entities.

E.g.: DM = {restaurant(r), Italian(r), ...}
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Background Knowledge (BKL): Lexical andworld knavledge shared by
the speaker and the hearer. BKL together with the DM is the
shared knomMedge (SHKL), i.e, the information that both the
speaker and the hearer know about.

E.g.: BKL = {{Jx (restaurant(x) — L[]y (cook(y) [Jpart-of(y,x))),
o}
Speaker Modd (SM): Additional knowledge of the speaker.
E.g.: DM = {cook(c), part-of(c,r), ...}

3.2.2. Intended and pdential anchors

Now, that we have the eriched representation d the context, we have to
examine how it interacts with the requirements under which a definite
description can be used. In aher words, what does it mean now for an entity
to be uniquely identified by a definite description? To answer this question,
we anploy the terms intended archors and potential anchors. Intended
anchors (1A) are those discourse old entities which the speaker intends to act
as the anchor of the target, and potential anchors (PA) are those etities
which from the hearer’s point of view (i.e., taking into account only shared
knowledge) could act as anchors of the target.

In the basic algarithm, the only intended anchor is always the target
itsdf. With bridgng descriptions this definition doviously has to be
loosened. (It is, in fact, one of the defining characteristics of bridging
descriptions that the anchor is different from the target.) We will say that
intended archors are all those discourse old entities o, such that ether o is
equal to the target, or it follows from the speaker’s knowledge that o is
related to the target via abridging relation. For instance: Let ¢ be the target.
If ¢ is mentioned in DM, then c is an intended anchor. Furthermore, if SM [
bridge(o,c), then o is an intended anchor of c aswdll.

The patential anchors of a target t given the description L in the @mntext
C are given by D(t,L,C) in the basic algorithm. Also this definition reels to
be loosened now. The potential anchars for the definite description the ok,
for example, shauld include nat only all the cooks in the discourse modd but
also al restaurants. Potential anchors will therefore be all discourse old
entities o that, given the shared knowledge SHKL (i.e, DM and BKL
together), fulfill ore of the following condtions:
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1. o fits the description L of t. For instance: L = {cook(c)}, t = ¢, and
SKKL E cook(o). Thisisthe caseif cook(o) [ DM.

2. o is reated (via abridgng reation) to some etity which fits the
description. For instance L = {cook(c)}, t = ¢, and SHKL |= x
(bridge(x,0) [Jcook(x)). This is the case if restaurant(o) ./ DM and
O x (restaurant(x) — L]y (cook(y) [Jpart-of(y,x))) [J BKL.

3. o is reated (via abridgng reation) to some ettity which fits a
generalisation d the description. For instance: L = {chandHier(c)}, t
= ¢, and there is a predicate G such that SHKL [ [7x (bridge(x,0) [J
G(x)) and BKL |=chandelier(c) — G(c). Thisis the caseif room(r)
[J DM, and [J x (room(X) — [Jy (furniture(y) [J part-of(y,x))) [
BKL, [Jx (chandHier(x) — lamp(x)) [J BKL, and [J x (lamp(X) —
furniture(x)) J BKL.

Note that the above condtions dorit allow to link protential anchors to the
target via chains of bridging relations. Here is an example to ill ustrate why
we want to exclude this. Assume that L = {cook(c)}, t = ¢, university(u) [J
DM, canteen(r) [J DM, [J x (univesity(x) — [y (canteen(y) [J part-
of(y,x))) [J BKL, and [J x (canteen(x) — Ly (cook(y) [J part-of(y,x))) [J
BKL. In this stuation, the university u should na be a potential anchor for
target ¢ (contrary to what would be predicted if chaining d bridging
relations was all owed), since otherwise Example (6) could be produced.

(6) Johnwent to the university. ???The cook wore a white apron.

Now, that we have defined intended and potential anchars', we can look at
the role they play in determining whether the use of a definite descriptionis
contextually appropriate. As we have just see, intended anchars are those
entities in the discourse modd that the speaker wants to link the referent of
the definite description to, and potential anchors are those ettities that the
definite description could possbly be linked to when considering orly the
hearer’s knowledge. A succesgul definite description therefore has to avoid
mismatches between the set of intended anchors and the set of potential
anchars. The hearer has to recognise the anchors intended by the speaker as
potential anchars, i.e., 1A(t,SM) [7 PA(t,L,SIKL), and he has to be able to
rule out al thase antities as anchors which are nat intended to be anchors by
the speaker, i.e, PA(t,L,SHKL) [J 1A(t,SM). The first condtion, which we
cal familiarity, ensures that the information which the speaker uses in the
description lets the hearer establish the link between target and anchor. The
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second condtion, which we call uniqueness of the anchor, makes sure that
the definite description contains enough information to rule out all
distracting anchors.

These two condtions explain why the definite description the aok is nat
appropriate in (7a) and (7b): it violates the famili arity condtion (zocs dori't
usually have cooks) and the uniqueness condtion (which o the two
restaurants is the anchar?), respectively.

@) a Johntook Jmto the zoo. ??? The cook was wearing a
white hat.
b. Thereisan Italianrestaurant and aChinese one at the end

of the stred. ???The cook is very good.

The two condtions do, however, na explain why the page in (8) is
inappropriate as well. For cases of this type, we need ore more condtion
saying that the target must be unique wrt. the anchor. l.e, it must be
coherent with the context to assume that there is only ore etity which fits
the description andis related to the anchor via abridging relation.

()] Johntook the bodk back to the shop. The page was missng.

We conclude this sctionwith a summary of the concepts and condtions that
have just been introduced and on which the algorithm in the following
sectionwill be based.
inteded anchors (IA(t,SM)): set of discourse old entities that the
speaker wants to relate the target to.
potential anchors (PA(t,L,ShKL)): set of discourse old entities that,
given only the hearer’s knowledge, could act as anchars for the
target.
familiarity condition: 1A(t,SM) [J PA(t,L,SHKL).
uniquenesscondition I : PA(t,L,SHKL) [J1A(t,SM).
uniqueness condition Il : It is consistent with the context to assume
that the target is the only entity which fits the description and is
related to the anchor via abridging relation.
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3.2.3. Extending the incremental algorithm

Now, we will modfy the basic algorithm presented in Section 2, so that it
works with the extended representation d the context and uses the nations of
intended and potential anchars to decide when to terminate successfully and
when to fail. The pseudo-codeis given in Figure 4.

initialise

1. targets — <t>

2. L~O

main loop: until no more entities are left on thetarget list
3. whil e targets # <> do

4, 0 ~ targetq1]

if the description rules out intended anchorsof o

5. if IA(0,SM) —PA(o,L,ShKL) # [

then return and classfy L as unfamiliar

6. then

7. return <unfamiliar, L>

8. endif

if oisuniquely identified

9. if PA(o,L,ShKL) O 1A(0,SM) and o is unique wrt. |A(0,SM)
then takeit from the target list

10. then

11 targets — targety[2,length(targets)]

elsetry to extend the description

12. ese

13 Ps = applicéble_literals(L,C)

14. if Ps= [ then return <nonuniquely-identified, L>
15. p=seled_org(Ps)

16. up@te targets and L with p

17. endif

18.  endwhile

19.  return <uniquely-identified, L>

Figure 4. The extended algorithm.

Like the basic algarithm, the extended algorithm starts with L = [7. It then
adds literals to L until the uniqueness condtion is stisfied, while making
sure that the familiarity condition is nat violated. There are two ways in
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which this algorithm can fail to build a uniquely identifying description. In
ore case, there are no more applicable literals which could be added to L but
the uniquenesscondtionis nat yet satisfied. Thisis smilar to the situationin
which the basic algorithm fails. The other case is new: the algorithm fails if
no cescription preserving the famili arity condtion can be built. Applicable
literals are computed as in the basic algarithm, but we furthermore give
preference to literals that preserve the famili arity condtion.

We will nowv go through an example to illustrate how the etended
algorithm works. Asume that the task is to generate an expresson referring
to entity c given the foll owing context:

BKL: Ox (restaurant(x) — L]y (cook(y) [Jpart-of(y,x)))
DM: restaurant(ry), italian(r,), restaurant(r,), chinese(r,)
SM: cook(c), part-of(c,ri)

That is, there are two restaurants in the context, an Italian ore and a Chinese
one, and the speaker wants to refer to the cook d the Italian ore, who hes
not been mentioned before. The table in Figure 5 shows how the description
and the status of the famili arity and the uniquenesscondtion evolve.

targets  description PA 1A
<c> ) al entities {r;} Fam. O
Unig.: [
<c> {cook(c)} {ra, ra} {ri} Fam.: O
Unig.: [
<r;, ¢> {cook(c), part_of(c, ri)} {rs, rz} {ri} Fam. O
Unig.: [
<r;, ¢> {cook(c), part_of(c, rq), {rs, rz} {ri} Fam. O
restaurant(r,)} Unig.: O
<r;, ¢> {cook(c), part_of(c, rq), {ri} {ri} Fam. O
restaurant(r,), italian(r;)} Unig.: O
<c> {cook(c), part_of(c, rq), {ri} {ri} Fam. O
restaurant(r,), italian(r;)} Unig.: 0
<> {cook(c), part_of(c, rq), O  descriptionis uniquely
restaurant(r,), italian(r;)} identifying

Figure 5. An examplerun of the extended algorithm.
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3.3. Summary and Discusson

Starting from a tripartite context representation we have defined condtions
that govern the generation d inference based definite descriptions. Based on
these we have then extended the base algorithm from Section 2.

This algorithm has been implemented using description logic to specify
the context and the description logic reasoning system RACER (Haaslev
and Mdller 2001 to carry out the necessary inferences.

What counts as a bridging relation is a question that is quite central for
our algarithm: if the definition is too loase the algorithm will overgenerate,
i.e., it will produce bridging descriptions that canna be linked to the context
by a human reader/hearer, and if it is too strict it will undergenerate in the
opposite direction. In the following section, we will describe a corpus gudy
which was aimed at getting a better idea of how the reation bridging
relation should be defined and what kind d knowledge would have to be
coded in the context knowledge bases in arder to be able to generate bridging
descriptiors.

What we have described in this section concentrated on the contextual
reasoning invaved in the generation d inference based descriptions. In
particular, we have ignaed the fact that bridging descriptions, similar to
pronauns, require highly salient anchors (Gundd, Hedberg, and Zacharski
1993. So, to be able to use our algorithm for the generation d referring
expressons within larger texts, it would have to be augmented with a
representation d saliencein arder to filter out potential anchars which are no
longxr accessble. See eg., (Krahmer and Theune 2001 for a proposal
addressng this question.

4. Corpus dudy

The algorithm in the previous <ction requires a knowledge base that
specifies which concepts can be linked through bridging relation. When
building a system for generating referring expressons in a given damain ore
therefore has to decide which relations linking concepts of that domain can
act as bridgng rdations and hence have to be included in the knowledge
base To get a better understanding d what relations can be invdved in
bridging descriptions we conducted a corpus gudy on French data. In this
section, we describe this corpus gudy and dscussthe results.
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We start (Section 4.1) with a brief description d the corpus that we used.
The anndation was dore in two passs. In the first pass which is described
in Section 4.2, we classfied al definite descriptions acoording to their
referential status (co-reference, bridging, first mention) in arder to identify
the bridging descriptions. In the second pass we anndated through which
relations the referents of the bridging descriptions were linked to their
anchars. Theresults of this part of the study are presented in Section 4.3.

4.1. Corpus and anndation method

We used a 65,000 words subcorpus extracted from the French PAROLE
corpus’ (Lecomte 1997). This corpus consists of articles taken from the
newspaper Le Monde and covers a wide range of topics (sports, culture,
politics, econamics and leisure). It is anndated at the morpho-syntactic level
in accordance with the anndation scheme MULTITAG/MULTEXT of the
GRACE project (Beaumont, Lecomte, and Hathout 1999. In particular,
each determiner is marked as ether definite, indefinite, contracted (i.e.,
contraction d a preposition and a determiner), partitive, demonstrative,
possessve, reative, exclamative or interrogative.

We used Gsearch (Corley et a. 2001) for automatically identifying the
definite descriptions and MM AX (Mdller and Strube 2001) to support the
anndation process

All annaations that are presented in the following were dore and agreed
onby the authors.

4.2. Referential status of definite descriptions

The first step of the corpus gudy aims at identifying bridging descriptions.
To this end, we carried aut a first anndation pass to classfy definite
descriptions with respect to their referential status. We use an anndation
scheme which is loosely based onthe proposals in (Poesio and Vieira 1998
and which dstinguishes the foll owing categories.

direct co-reference A nominal antecedent can be found. It refers to
the same etity as the target definite description. The head
nauns of the antecedent NP and the target NP are the same.

indirect co-reference A nominal antecedent can be found. It refersto
the same etity as the target definite description. The head
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nouns of the antecedent NP and the target NP are the nat same.
Indirect co-reference can be realised by using lexical relations
such as hyponymy, hypernymy and synonymy.

bridging:. A nominal or verbal antecedent can be found. It refersto a
different entity than the target definite description, but, due to
general lexical or world knawledge, the referent of the target
NP is interpreted as a part of the referent of the antecedent or
as an doject linked to theit.

first mention: There is no antecedent in the text that fits one of the
previous condtions.

Theresults of thisfirst annaation passare given in Figure 6.

dired co-reference 612 6,96%
indired co-reference 869 9,89%
bridging 416 4.73%
first mention 6892 78,42%
total 8789 100%

Figure 6. Results of the first anndation pass

As can be seen, the proportion d first mention cefinites is very high (almost
80%). In comparison, Poesio and Vieira (1999 report arate of around 50%,
and Fraurud (1990 found that 60.9% of the definite descriptions in Swedish
text are first mention. There are several factors which might be responsible
for this difference. Oneis that in aur definition the first mention classplays,
to a certain extent, the role of the “waste paper basked’: everything which
doesn't fulfil the criteria of any o the other classes gets classfied as first
mention. In particular, event or discourse deictic anaphora ae first mention
according to aur definition. But there are also factors related to the language
and text type that might play a role. First, many country names, institution
acronyms and idioms in French invdve a definite article (e.g., la France la
Cote d'lvoire for country names; le CNRS, la CNCL for acronyms and avoir
la main for idioms). Second we classfied repeated use of similar definite
descriptions sparated from each aher by a long dstance as first mention.
Third, we found a high rumber of generic uses. Fourth, the corpus contains
a very high percentage (19.63%) of cortaining inferable (i.e, definite
descriptions guch as the heat of the sun which are in fact familiar through
their explicit relation to a known entity).
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With respect to the generation task, these results indicate that only a very
small portion d the data can be handed by the Dale and Reiter algorithm
which in essnce deals only with drect co-reference cases that is, 6.96% of
the cases found in aur corpus. Extending the algorithm as is proposed in
Section 3 to inference base definite descriptions increases the coverage by
14.6%. Noretheless there remain 78.42% of first mention dfinites which
cannd be generated. To properly treat these, the eisting algorithms have to
be etended (i) to deal with discourse new information in definite noun
phrases and (i) to generate containing inferables.

4.3. Bridgngreations

Now, we come to the second part of our corpus gudy which is aimed at
answering the following two questions. 1.) What relations are used to link
the referents of bridging descriptions to their anchor? 2.) What knowledge
sources provide these reations: is it a lexical reation (eg., meronymy,
hyponymy, synonymy) whose eicodng is part of resources such as
WordNet? Is it given by world knowledge? Or is it given by a lexicographic
definition?

We will first present the typology d bridging relations that we developed
based on classfications proposed in the literature and the evidence that we
found in aur corpus. Then we show the distribution d bridgng reations in
our corpus wrt. to this typology and dscuss the implications thase results
have for the generation d bridging descriptions.

4.3.1. Atypdogy of bridging relations

The anndation scheme we propose classfies bridging descriptions into five
broader classes: set membership, thematic, definitiond, co-participart,
nonlexcal. We now discuss each o these in more detail showing, in
particular, how a specific reation is identified and hawv its smantics is
establi shed. (Also see(Gardent, Manudian, and Kow 2003.)

Set membership. This class covers cases where the target is dther a
member or a subset of the set referred to by the antecedent (a group of
similar indviduals); e.g., seminars/the last seminar. The semantics of this
bridgng relation is st membership or subset. The anchor must be a set of
individuals and the target an individual or a set of individuals.
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Thematic. Asillustrated by the pair murder/murderer, the target can be
related to the anchor via athematic relation (a murderer is the agent of a
murder). More generaly, a thematic bridge links an individual to an event
via athematic rdlation defined by the thematic grid o the event. As aresult,
the property denated by the noun characterising the individual must be
subsumed by the characterisation gven by the definition d the thematic
grid.

Definitional. In this case, the implicit bridging relation hdding between
anchor and target is given by the dictionary definition d either the target or
the anchor. For instance, in the pair operatior/convalescence a
convalescence (the target) can be defined to be the period following an
operation (the anchar) or a disease so that in this case, the bridging relation
between anchar and target is one of temporal successon.

In a definitional bridge, the definition usually imposes a sortal restriction
which must be satisfied by the related doject (anchor or target). The property
declared (in the text) to hdd o the related doject must thus be subsumed by
the property requested to hdd o therdlated dbject by the definition.

We distinguish threekinds of definitional relations: meronymic reations,
reations between indviduals and an attribute, and relations between
indviduals and an associate.

Meronymic relations are reations which can be epressd using
constructions with part of or has. For two dojects X and Y to be in a
meronymic relation, it must be possble to say that X usually has Y andthat
Y usualy is a part of X. The meronymic relation implies (spatial, temporal
or abstract) incluson and can orly hdd between entities of the same
ontological types (indviduals, events etc.). Following (Winston, Chaffin,
and Hermann 1987, we asume various types of meronymic relations, such
as whale/part, whole/piece individud/ stuff, coll ection/member, place/area,
event/subevent; for a more precise definition d each o these reations, we
refer the reader to (Winston, Chaffin, and Hermann 1987). Addtionally, we
asuime an individua/function meronymic relation (eg., a club/the
president) which involves a definitional bridge hading between indviduals
with ore of the related individuals being described by his professon a
functionwrt. the other (Kleiber 1997).

Contrary to the meronymic relations, the two aher types of definitional
bridgng rdations do nd imply inclusion but a simple implication relation (a
teacher implies ome audience, a surface implies an dbject etc.). More
specifically, individual/attribute pairs (e.g., a persorn'the age) invdve a
definitional bridge hdding between indviduals with ore of the related
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individuals being a feature (i.e., something that takes a value within a given
damain). Individual/assciate pairs, such as question/answer, may invave
two indvidual, oreindvidual and an event or two events. Neither of the two
is a part of the other, but a dictionary definition will define one in terms of
the other.

Co-participants. There are cases where the relation hdding between
target and anchor is mediated by a third doject which is mentioned in the
dictionary definitions of both target noun and antecedent. For instance, the
pair trip/seat is related by the reation “in vehicle used for” which can be
reconstructed from the definition d the target (“a seat is a place reserved for
sitting in a vehicle or aroom”) and d the anchor (“a trip is a displacement
of persons by some means of transport”). In such cases, the definitions of the
target and the anchor invdve two properties P, and P, which stand in a
subsumption relation (here, vehicleis subsumed by means of transport).

Non lexical. Finaly, there are cases sich as Grenole/the region or
fight/the dead where no amount of lexical knowledge will help and wherethe
relation hdding between target and anchor is given either by discourse
structure (circumstantial) or by our knowledge of the world and d how
things work (WKL).

4.3.2. Distribution d bridging relationsin the @rpus

In a second anndation pass we classfied 359 lridgng descriptions
according to the typology just presented. The results, given in Figure 7,
suggest the following preliminary conclusions.

First, the importance of the meronymic reation, which is often taken to
be the canorical example of a bridging ration, has been corfirmed: 52% of
the bridgng descriptions invdve this relation. Since, moreover, the
meronymy relation is encoded in WordNet, this suggests that many cases of
bridgng dfinite descriptions could be processed using WordNet (Fell baum
1998. We thus did a first manual search through WordNet, checking for
each bridging description invadving a meronymic reation encoded in
WordNet (i.e., whae/part, collectiorymember and individual/stuff) to check
whether it was related by a direct or indrect (i.e, inherited through a
hyponym) meronymic link to its anchor. Unfortunately, we found that only
38 of our 187 meronymic cases were present in WordNet. However, a closer
look at the data shows that only a rdatively small number of different object
sorts are invdved in meronymic relations in our corpus (town parts, country
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parts, enterprise parts, etc.). This suggests that it should be possble, given a
domain and sublanguage, to extend WordNet with the meronymic
information recessary to processmost of the bridging descriptions invaving
this relation; or alternatively, to develop the appropriate meronymic
knowledge.

Class No. of ocaurrences Proportion
set membership 21 5.85%
thematic 19 5.2%
definitional 283 7883%
individual/attribute 32 8.91%
individual/asociate 64 17.83%
meronymic relations 187 520%%
whole/part 89 24.80%

whole/piece 0 0%

individual/ stuff 0 0%

coll ection/member 22 6.13%
placearea 26 7.24%

event/subevent 16 4.46%
individual/function 34 9.47%
co-participants 8 2.23%
non lexical 28 7.80%
circumstantia 17 4.74%

WKL 11 3.06%

Figure 7. Bridging relations.

Second, and again this is important for processng purposes, the number
of cases invaving nonlexical knowvledge is rdatively small with 4.7% of the
definite descriptions invaving a circumstantial relation (i.e., non knavledge
based spatial or temporal inclusion eg., lagundthe inhaktants) and 3%
invalving world knowledge (no lexical relation can be found between anchor
and target eg., war/survivors, fight/dead). In such cases, the reation
between target and anchor has to be found ether (in the first case) through
discourse structure (the structure of discourse determines in some way the
relation between predicates, arguments and modifiers) or (in the secondtype
of cases) through some complex reasoning (a fight can result in a person
being hurt; one form of being furt isto be dead etc.).
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Third, an important classof bridging that does not appear in the literature
but that turned aut to be quantitatively non regligible is the class of
indvidual/associate pairs (17.8%). This class covers cases where the
lexicographic definition d the target implies the eistence of a target related
entity whose sort sulbsumes the sort of the anchor. The bridging relation in
such cases is the relation gven by the lexicographic definition (cf. examples
as operatior/convalescence, athletics/nationd federation, question/answer
investigation/witness  leport). For computational processng, the
indvidual/associate class is problematic because it presupposes the
avail ability of lexicographic definitions usable computationally.

Finally, the thematic dasswhich represents 5.3% of the found bridging
descriptions, could be processd using a tod such as FrameNet (Baker,
Fillmore, and Lowe 1998 in which words are assciated with a frame (or
script) specifying the frame dements (aka thematic roles) likdy to
participate in the scenario evoked by that frame. A preiminary manual
search shows that this is indeed the case — for 14 of the 19 thematic cases,
we found a frame correspondng to the anchor and containing the target as a
frame dement.

In summary, it seans that for the data found in the PAROLE corpus,
roughly 65% of bridging dfinite descriptions could be processed using
ather FrameNet, WordNet or some limited form of lexical reasoning. The
remaining 35% requires ether lexicographic definitions (17.8%), essential
attribute information (9%), discourse structure information (4.7%) or deep
knowledge based reasoning (3%).

5. A non-incremental algorithm for generating definite descriptions

Both algorithms that we have seen so far, the base algorithm of Section 2 as
well as the inference based version d Section 3, build the distinguishing
description incrementally, i.e., the output is constructed ore step at a time
and without backtracking. Most extensions to Dale and Reiter’s algorithm
that have been proposed follow this incremental approach. In particular, its
extension by van Deamter (2002 to bodean properties and nonsingeton
sets of indviduals is incremental. Similarly, the algorithms described by
Horacek (1997 and Store (1998 interleave the incremental computation d
a distinguishing description with an incremental construction d the syntactic
tree associated by the grammar with this description. Each property selected
to better identify the target set is used to retrieve a lexical entry whaose
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semantics is this property and this lexical entry is immediately integrated
into the current description. Thus, in these douldy incremental approaches,
both the content and the form of a definite description are determined
gredlily, i.e., locally and without backtracking.

In this part of the paper, we eplore the feasibility and usefulness of
developing an alternative norrincremental algorithm. We start (Section 5.1)
by presenting a norrincremental, constraint-based algorithm for generating
distinguishing descriptions and showing haw it can be integrated in a surface
reali sation algorithm. We then show that such a norrincremental algarithmis
advantageous in at least two ways: it provides linguistically and cogritively
better distinguishing descriptions than the incremental algorithm (Section
5.2); and it provides top-down guidance for the surface reali sation algarithm
which better supports the realisation d definite descriptions (Section 5.3).

5.1. A constraint-based nonincremental algorithm for generating dcefinite
descriptions

As Dae and Reter (1995 show, the problem of findng minimal
distinguishing descriptions can be formulated as a minimal set cover
problem and is therefore known to be NP hard (Garey and Johrson 1979.
The aternative algarithm we propose is therefore based on the use of
constraint programming (CP), a paradigm aimed at efficiently solving NP
hard combinatoric problems. Instead o following a generate-andtest
strategy which might result in an intractable search space, CP minimises the
search space by following a propagde-anddistribute strategy where
propagation daws inferences on the basis of efficient, deterministic
inference rules and dstribution, i.e., case distinctions for a variable value, is
performed orly when necessary because no further propagation steps are
posdble (Roy and Haridi 2003.
The basic algorithm. Consider the definition d a distinguishing description
givenin (Dale and Reiter 1995.

Let r be the intended referent, then a set L of attribute-value
pairs is a distinguishing description for r if the following two
condtions had:

C1: Every attribute-value pair in L appliestor: that is, every
eement of L specifies an attribute value that r possessss.

C2: For every other entity c of the cortext, there is at least
one dement | of L that does nat apply to c: that is, thereis an
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| in L that specifies an attribute-value that ¢ does nat possess
| is sid torule out c.

This definition can easily be lifted to the case where the target is nat asinge
entity but a set S of entities. In this case, every attribute-value pair in L has
to apply to all rJS. This definition can be stated in terms of constraints over
sets as foll ows.

I: the universe;
P’ the set of properties sme entity x has;
Py =P —P’, theset of properties sme entity x does nat have;
P"s= nxas P'x: the set of properties true of all eements of S;
Ps=P - yys P'x the sat of properties false of all dementsof S;
L= [P",P Uisabasic distingushing description for S iff:

1. P OP

2.P"0Psand

3. 0cOI-SOP-P*) O (P nP)0>0

A description for the target set Sis represented by a pair of set variables
[P",P Uconstrained to be a subset of the set of positive properties of S, P’
(i.e., properties that are true of al dementsin S), and d the set of negative
properties of S P (i.e., properties that are true of nore of the dements in
S), respectively. The third constraint ensures that the conjunction d
properties thus built diminates all distractors, i.e, each dement of the
universe which is nat in S More specifically, it states that for each distractor
cthereis at least one property P such that either P is true of (all eementsin)
Shut nat of c or Pisfalseof (all dementsin) Sandtrue of c.

If the problem is formulated in this way, it can be solved using a
constraint programming language such as Mozart/Oz (Programming
Systems Lab 1999 which supports st variables. Every assgnment of
values to variables which satisfies the constraints in the definition gven
above is then a posgble solution, i.e,, a distinguishing description for the
given target set in the given context.

Addtionally, a distribution strategy needs to be made precise which
specifies how to search for solutions. We want to ensure that smaller
solutions are preferred and therefore distribute (i.e., make case distinctions)
over the cardinality of the output description OP"0O0P 0 starting with the
lowest possble value. That is, first the algorithm will try to find a
description [P*,P"Owith cardinality ore, then with cardinality two etc. The
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algorithm stops as on as it finds a solution. In this way, the description
output by the algorithm is guaranteed to always be the shortest possible
description.

C1 C Cs P1 b,
cup . . .
plate .
bow .
red . . .
blue . .

Figure 8. An example mntext.

To illustrate this we will assume the context in Figure 8. Now, let our
target st S={c;, ¢;}. Then P's= {cup, red} and Ps= {plate, bom, red}.
Thereis no description containing orly one negative or positive property that
distinguishes the dements of S from all other dements in the universe. So,
the algorithm will | ook for one consisting d two properties and finds the
following two posgbilities: L = Qcup, red}, OO(the red cups) or L =
Qcup}, {blue} O(the aups which are not blue). Both o these descriptions
satisfy all three constraints given above and dstinguish ¢; and c; all other
entities in the context.

Extending the algorithm with digunctive properties. To take into
account disunctive properties, the constraints used can be modified as
ind cated foll ows:

Ls=Ls:0 ... OLspis adistinguishing description for a set of indviduals
iff:
e 1<n<09]
e S=50..0%
e For1<i<n,Lgisabasicdistinguishing descriptionfor §

That is, the algarithm looks for a tuple of sets such that the union S, O...00
S of the tuple€'s dements is the target set S and such that for each set § in
that tuple there is a basic distinguishing description Lg. The resulting
description is the disjunctive description Ls; [0 ... [0 Lsy Where each Lg is a
conjunctive description d S. As before solutions are searched for in
increasing ader of size (i.e, of literals occurring in the description) by
distributing ower the cardinality of the resulting description.
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Integration with surface realisation. To permit the generation d
definite descriptions, the constraint-based agorithm for generating
distinguishing descriptions presented above neals to be integrated with
surface reglisation. Asauming, as is usual, that the generation process is
driven by comnunicative goals and, in particular, by informing and
describing gals, this can be dore by simply updating the current goal
semantics with dstinguishing descriptions. Whenever an entity must be
described which is discourse old, a distinguishing description will first be
computed for that entity using the above constraint solver and then added to
the current goal semantics thereby driving further generation. Given some
overall goal semantics, the generator then seeks to reali se this goal semantics
by building a phrase structure treethat (i) reali ses that goal semantics, (ii) is
syntactically complete and (iii ) is pragmatically appropriate.

Implementation. The constraint solver and the surface realisation
algorithm sketched above have been implemented within the INDIGEN
generator using the concurrent constraint programming language Mozart/Oz
(Programming Systems Lab 199§ which supports st variables rangng ower
finite sets of integers and provides an efficient implementation d the
asciated constraint theory. The proof-of-concept implementation includes
the constraint solver described above and its integration in a chart-based
generator integrating surface realisation and inference. Theintegration of the
constraint solver within the generator permits realizing dfinite NPs
including regative information (the at that is not white) and simple
conjunctions (The @t andthe dog).

5.2. Problems with incremental content determination

As argued in (Gardent 2002, the incremental algorithm, especially when
generalised to bodean properties and sets of indviduals, might yied
cogritively and linguisticall y inadequate distinguishing descriptiors.

Consider for instance a context such as pictured in Figure 9 and suppose
thetarget set is{Xi, Xz, X3, X4} .
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white  small medium  big dog rabbit cat horse  sheep

X1 . . .

X2 . . °

X3 . .
X4 . . .
X5 . . .
X6 . .

X7
Xg
X9
X10

Figure 9. The dog, the rabhit, and the at.

Recall that to build a distinguishing description for a given target set, the
incremental algorithm goes through the list of avail able properties in a given
order and sdlects from it those properties which at each step (i) have the
target set in ther extension (all objects in the target set must have the
sdected property) and (ii) €iminate some distractor (the etension d the
sdected property may na be contained in the current distractor set).

The ordering d the properties is fixed in two ways. First, the diunctive
length is considered: the algorithm starts with dsjunctive properties of length
ore, then goes on to dgunctive properties of length two etc. (cf. van
Deamter 2007). Second properties are ordered using sortal information (cf.
Dale and Reter 1999. For instance, the search through the available
properties for the above example could be fixed to follow the order:

type < size < colour

Given these assumptions, the steps foll owed by the incremental algorithm
to build a distinguishing description for the target set { X1, X2, X3, Xa} in the
context given in Figure 9 might be as ketched in Figure 10.

First, a nondigunctive type property is looked for whose etension
contains the target set and is na contained in the current distractor set
namely {Xs, Xs, X7, Xs, X9, X10} . TWO properties stisfy these criteria: ~horse
and - sheep. Suppose the property —horse is sected. It is then added to the
distinguishing description (which is initially empty) and the distractor set is
updated to the intersection d the current distractor set with the extension d
the selected property namdy, {Xs, Xs, X7} .
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sdeded property distractor set
digunct of length 1
type - harse {xs, Xe, X7}
size - medium {xs}
colour No applicable property. {Xs}
digunct of length 2
type No applicable property. {xs}
size No applicable property. {xs}
colour No applicable property. {Xs}
digunct of length 3
type dogOrabht Ocat {Xs}

Figure 10. Generating descriptions of sets with the incremental algorithm.

Next the “size properties’ are considered and the property —medium is
selected reducing the distractor set to {xs}. No colour property satisfies the
sdection criteria hence digunctive properties of length two are considered
nore of them satisfies the sdection criteria. When considering dsjunctive
properties of length three the digjunctive type property dog [Jrabht [Jcat is
sdected thus yieding an empty distractor set. At this dage generation halts
yielding the distinguishing description:

(=horse) U (= medium) (I (dog U rabht U cat)

That is, the incremental algorithm will in this case yield a distinguishing
description which can be paraphrased as

the dogs, rabhits and catsthat are not horses andthat are not medium size

when a much shorter and more natural distinguishing description would
in this case be the one paraphrased as

the dogs, the rablts andthe ats.

More generally, this example ill ustrates threetypes of problems for the
incremental approach:

* Contextually redundant descriptions: the description produced
might be contextually redundant in that a property present in the
description might be entailed in the given contex by some other
information present esewhere in the description. For instance the
(-medium) property is contextualy redundant in the above
description as in the given context, dogs, rabbits and cats are all
ether big a small hence nat medium size.
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e Epistemically redundant descriptions: the description produced
might be epistemically redundant in that a property it contains
follows from some other information present esewhere in the
generated description and from our general knowledge about the
world. For instance the (- horse) property is epistemically redundant
in the above description since we know that dogs, rabbits and cats
cannd be horses.

e Logically complex descriptions: the description produced might be
unnecessarily complex due to a high rumber of logical conrectives.
For instance, the description generated for the above example by the
incremental algorithm contains two negations, two dsjunctions and
two conjunctions whilst a much simpler distinguishing description
exists which corntains only two dsjunctions.
In contrast, because it produces minimal descriptions, the norrincremental
agorithm for computing dstinguishing descriptions presented in the
previous ctionis nat aff ected by any o these problems.

5.3. Problems with incremental surface reali sation

In case of success the output of theincremental algorithm is a distinguishing
description, which is a conjunction d possbly complex properties whose
denatation equals the target set.

To further redlise this distinguishing description into a definite
description, a kind d “double incrementality” has sometimes been proposed
(Horacek 1997 Stone 1998 which consists in interleaving the incremental
algorithm with surface realisation, i.e., with the construction d the syntactic
treeassociated by the grammar with the input semantic representation. Each
sdlected property is used to retrieve a lexical entry whose semantics is this
property and this lexical entry is immediately integrated into the treewhich
has been generated so far. In this way, it is ensured that the distinguishing
description can be redlised as a definite description (when the current tree
cannd be updated with the sdected lexical entry, another property is
selected).

Thus in these doubly incremental approaches, it is nat only the content
but also the form which is determined gedlily, i.e, locally and without
backtracking. In aher words, no dobal information is avail able which could
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help in planning the definite NP. As we shall now see this lack of global
information may result in very unnatural definite NPs.

Consider again the above eample. As noted, the distinguishing
description produced by the incremental algorithm could in this case be

(= horse) (= medium) [ (dog O rabht (I cat)
If, as suggested by the doubly incremental algorithms, properties are realised

in arder of sdection, the succesdve redlisation phases will roughly be as
follows:

the non hases
the nonmedium sized non hoses
the nonmedium sized non haoses that are @ther dogs, rabhts or cats

where, as nated above, a much more natural redlisation d the input
distinguishing cdescription would be: the dogs, rabhits and cats that are not
horses andthat are not medium size.

The problem is that the order in which the incremental algorithm selects
properties and the order in which properties can best be reslised are
governed by completely orthogoral constraints. More generally, the lack of
global information concerning the semantics of the NP to be generated
means that the overall structure of the NP cannd be optimised. So, for
instance, the generator is in this case unable to recognise that the “best”
definite description realising the computed dstinguishing description is a
three diguncts NP with two conjoined modifiers (rather than a ore disjunct
NP with threedisjoined modfiers).

In contrast, a surface realiser that is guided by a goal semantics (e.g., a
distinguishing description) can use this ssmantics to plan and gotimise the
structure of the generated constituent (e.g., a definite description).

To start with, since the semantic information to be realised is given
globally, redlisation can be dictated by the grammar on the basis of the
sdected lexical entries and d their syntactic combinatorics rather than on
the order in which properties are selected.

Further, various optimisation strategies can be devised based on the
structure of the semantic input. Thus for instance, the surface realiser can
detect from the form of the input ddlivered by the constraint solver described
in the previous <ction (in essence a digunctive nomal form, i.e, a
digunction d conjunctions of literals) the number of conjuncts contained in
the generated definite description — and recursively the number of diuncts
each conjunct should contain. Similarly, because negative and positive
properties are kept separate, reali sation strategies can be devised to gptimise
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the structure of the NP (if the distinguishing description contains sveral
negative properties, for instance, antonyms can be searched for to minimise
the number of negations). Finally, aggregation techniques could be applied
to the input so as to avoid the repetition d semantic material appearing
several timesin the input distinguishing description.

A further advantage of the nortincremental algorithm presented in
Section 5.1 is that it provides a richer input for surface realisation. Recall
that the information autput by the incremental algorithm focuses on property
names rather than onproperty denatations. As aresult, appropriate decisions
regarding the singular/plural distinction cannd be made since the
cardinality of the extension d the property to be redlised is unknown, it is
not possble to decide whether the realised constituent should be plural
(cardinality greater than ore) or singular (cardinality equal to ane).

In contrast, the input delivered by the nonincremental algorithm to the
surface realisation component is a sequence of descriptions L' and o
correspondng sets S each description Li in L' is a distinguishing
description for the correspondng set S in S™ and the sequence of
descriptions S is interpreted as a disjunction. This pairing d descriptions
with sets, means that the correct number information can be determined: if a
set has cardinality ore, the correspondng NP will be singular; ese the NP
should be plural.

In sum, although the constraint based approach, not being incremental,
does nat alow for a tight interleaving d content planning and surface
realisation and thus does not guarantee that the planned dstinguishing
description can actually be realised, it provides top-down guidance for the
realiser which better supports the generation d syntactically optimal definite
descriptions. Note further that the reverse problem hdds for doubly
incremental algarithms: although they guaranteethat a definite descriptionis
built whenever a distinguishing description exists, they fail to guaranteethat
a referring expresson is generated for thase cases where no dstinguishing
description exists. Indeead in such cases, the doubly incremental algarithm
will fail whereas the nonincremental algorithm will both detect the lack of
distinguishing description and propose an alternative referring expresson
(eg., anindefinite NP).
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6. Conclusions

Starting from Dale and Reiter’s (1999 incremental algorithm for generating
definite descriptions, we have proposed two kinds of modfications to this
algorithm.

First, we showed how the incremental algorithm can be interleaved with
reasoning to support the generation d both indrectly co-referring cefinite
descriptions and bridging descriptions. And second we argued that non
incremental versions of the Dale and Reiter’s algorithm should be explored
both to compute distinguishing descriptions and to construct the associated
definite descriptions. We proposed such an algorithm based onthe use of set
constraints and constraint programming.

These two extensions go in two dfferent directions and address diff erent
problems, but, obviously, we will have to find a way to reconcile them and ,
eg., extend the nonincremental constraint based algorithm to incorporate
reasoning.

But also independently each o the approaches points to interesting
questions concerning the generation d referring expressors. In aur
implementation d the nonincremental algorithm, we assumed that minimal
solutions are the best solutions. This is, of course, an approximation that is
nat always true. It would be interesting to investigate and modd the factors
influencing the “quality” of a definite description. We bdieve that the
constraint based approach we proposed provides us with an environment
where we can experiment with dfferent quality related restrictions.

The algorithm for the generation d inference based definite descriptions,
on the other hand, touches on the issue of knowledge representation for
natural language processng. It relies on the eistence of knowledge bases
specifying relations between concepts. In particular, the knowledge bases
have to specify which concepts are linked by a relation that can be used as a
bridgng relation. To get a better understandng onwhat information hes to
be moddied in ader to generate bridging descriptions, we undertook a
corpus gudy. The results of this gudy show that the necessary knowledgeis
largely restricted to certain kinds of lexical knowledge, such as meronymy
and verb frames. So, we are optimistic that, for a given damain, the
knowledge bases necessary for the generation d bridging descriptions can be
built. The next step would nowv be to actually build a larger knowledge base
for some domain, investigating to what extend we can use &isting resources
(WordNet, FrameNet) and hav we can doso in a systematic way. Anather
interesting question is whether the knowledge can be learned from corpora or



Generating cEfinite descriptions 31

the web using, e.g., techniques as proposed by Bunescu (2003 or Markert,
Nissm, and Modeska (2003. This larger knowledge base could then also
be used to test and evaluate our algorithm.

The corpus dudy has furthermore shown that the generation d referring
expressons has to look at nonranaphoric uses of definite descriptions. They
make up such a large percentage of all definite descriptions foundin corpora
that one cannd assume to generate natural sounding text without being able
to properly acoount for this phenomenon A secondcorpus gudy (Manuélian
2003 examining the distribution d given vs. new information in definite
descriptionsis afirst step in this direction.

Notes

1. For a more detailed and more formal definition of intended and potential
anchors e the tedinical report available at http://www.coli.uni-
sh.de/~kris/papers/iwcsA-bodk.ps.gz.

2. The PAROLE corpus was created by the CNRS research unit ATILF
(Analyse @ Traitement Informatique de la Langue Francaise) and was made
available to us in the @ntext of a collaboration between ATILF and the
LORIA research unit.
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